1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lina20 [59]
3 years ago
9

Which of the following are true for acceleration?

Physics
1 answer:
Fittoniya [83]3 years ago
6 0

The SI unit for acceleration is m/s2 ( D)

You might be interested in
Automobiles must be able to sustain a frontal impacl The automobile design must allow low speed impacts with little sustained da
valentinak56 [21]

Answer: the effective design stiffness required to limit the bumper maximum deflection during impact to 4 cm is 3906250 N/m

Explanation:

Given that;

mass of vehicle m = 1000 kg

for a low speed test; V = 2.5 m/s

bumper maximum deflection = 4 cm = 0.04 m

First we determine the energy of the vehicle just prior to impact;

W_v = 1/2mv²

we substitute

W_v = 1/2 × 1000 × (2.5)²

W_v = 3125 J

now, the the effective design stiffness k will be:

at the impact point, energy of the vehicle converts to elastic potential energy of the bumper;

hence;

W_v = 1/2kx²

we substitute

3125 = 1/2 × k (0.04)²

3125 = 0.0008k

k = 3125 / 0.0008

k = 3906250 N/m

Therefore, the effective design stiffness required to limit the bumper maximum deflection during impact to 4 cm is 3906250 N/m

3 0
2 years ago
Steam enters a counterflow heat exchanger operating at steady state at 0.07 MPa with a specific enthalpy of 2431.6 kJ/kg and exi
PIT_PIT [208]

Answer:

Explanation:

Given:

Steam Mass rate, ms = 1.5 kg/min

= 1.5 kg/min × 1 min/60 sec

= 0.025 kg/s

Air Mass rate, ma = 100 kg/min

= 100 kg/min × 1 min/60 sec

= 1.67 kg/s

A.

Extracting the specific enthalpy and temperature values from property table of “Saturated water – Pressure table” which corresponds to temperature at 0.07 MPa.

xf, quality = 0.9.

Tsat = 89.9°C

hf = 376.57 kJ/kg

hfg = 2283.38 kJ/kg

Using the equation for specific enthalpy,

hi = hf + (hfg × xf)

= 376.57 + (2283.38 × 0.9)

= 2431.552 kJ/kg

The specific enthalpy of the outlet, h2 = hf

= 376.57 kJ/kg

B.

Rate of enthalpy (heat exchange), Q = mass rate, ms × change in specific enthalpy

= ms × (hi - h2)

= 0.025 × (2431.552 - 376.57)

= 0.025 × 2055.042

= 51.37455 kW

= 51.38 kW.

5 0
3 years ago
1. The planet Jupiter completes a revolution of the sun in 11.5 years. Express it in seconds. Given that one year= 3.154 × 10^7
xenn [34]

Answer:

The planet Jupiter completes one revolution of the sun in 362710000 seconds. Long time, right?

Explanation:

3.154x10^7=3.154x10000000=31540000

11.5x31540000=362710000

7 0
1 year ago
You wish to cool a 1.83 kg block of tin initially at 88.0°C to a temperature of 57.0°C by placing it in a container of kerosene
uranmaximum [27]

Answer:

0.273 liters are needed to accomplish this task without boiling.

Explanation:

The minimum boiling point of kerosene is 150\,^{\circ}C. According to this question, we need to determine the minimum volume of liquid such that heat received is entirely sensible, that is, with no phase change.

If we consider a steady state process and that energy interactions with surrounding are negligible, then we get the following formula by the Principle of Energy Conservation:

\rho_{k}\cdot V_{k}\cdot c_{k}\cdot (T-T_{k,o}) = m_{t}\cdot c_{t}\cdot (T_{t,o}-T) (1)

Where:

\rho_{k} - Density of kerosene, measured in kilograms per cubic meter.

V_{k} - Volume of kerosene, measured in cubic meters.

c_{k}, c_{t} - Specific heats of the kerosene and tin, measured in joule per kilogram-Celsius.

T_{k,o}, T_{t,o} - Initial temperatures of kerosene and tin, measured in degrees Celsius.

T - Final temperatures of the kerosene-tin system, measured in degrees Celsius.

Please notice that the block of tin is cooled at the expense of the temperature of the kerosene until thermal equilibrium is reached.

From (1), we clear the volume of kerosene:

V_{k} = \frac{m_{t}\cdot c_{t}\cdot (T_{t,o}-T)}{\rho_{k}\cdot c_{k}\cdot (T-T_{k,o})}

If we know that m_{t} = 1.83\,kg, c_{t} = 218\,\frac{J}{kg\cdot ^{\circ}C}, T_{t,o} = 88\,^{\circ}C, T_{k,o} = 24.0\,^{\circ}C, T = 57\,^{\circ}C, c_{k} = 2010\,\frac{J}{kg\cdot ^{\circ}C} and \rho_{k} = 820\,\frac{kg}{m^{3}}, then the volume of the liquid needed to accomplish this task without boiling is:

V_{k} = \frac{(1.83\,kg)\cdot \left(218\,\frac{J}{kg\cdot ^{\circ}C} \right)\cdot (88\,^{\circ}C-57\,^{\circ}C)}{\left(820\,\frac{kg}{m^{3}} \right)\cdot \left(2010\,\frac{J}{kg\cdot ^{\circ}C} \right)\cdot (57\,^{\circ}C-24\,^{\circ}C)}

V_{k} = 2.273\times 10^{-4}\,m^{3}

V_{k} = 0.273\,L

0.273 liters are needed to accomplish this task without boiling.

3 0
3 years ago
a bicycle uniformly from rest at time t the velocity of the bicycle is v at what time will the bicycle have a velocity of 4v​
sesenic [268]

Here

  • Acceleration and initial velocities are constant.

According to first equation of kinematics.

\\ \sf\longmapsto v=u+at

\\ \sf\longmapsto v=0+at

\\ \sf\longmapsto v=at

\\ \sf\longmapsto v\propto t

  • Time was t at velocity v
  • Time will be 4t at velocity 4v
7 0
2 years ago
Other questions:
  • Describe each of the three types of hazardous weather forecast?? Please tell ne the answer
    10·1 answer
  • The potential difference in a simple circuit is 2 v and the resistance is 2 ω . what current flows in the circuit? answer in uni
    7·1 answer
  • Which of these events is an example of resonance?
    10·2 answers
  • 3) If an airplane is in flight cruising at constant velocity, what can be said about the net work
    7·1 answer
  • An oxygen atom picks up two additional, free floating electrons. Is the charge of the newly formed oxygen ion positive, negative
    5·2 answers
  • 98 POINTS, 5 simple questions!! HELP
    6·2 answers
  • What is the minimum force required to increase the energy of a car by 69 J over a distance of 42 m? Assume the force is constant
    12·1 answer
  • A cannonball is fired perfectly horizontally from the top of a 210 m tall cliff. It is fired with an initial velocity of 50 m/s.
    8·1 answer
  • B. If we drop a ball from the roof, its falls<br>downward​
    14·2 answers
  • A 50-ω resistor is connected to a 9.0 V battery. How much thermal energy is produced in 7.5 minutes?1.2 * 10^2 J1.3 * 10^3 J3.0
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!