The speed of an electron when it moves in a circular path perpendicular to a constant magnetic field is 8.88 x 10^7 m/s.
The angular momentum(L) of an electron moving in a circular path is given by the formula,
L = mvr ........(i)
We know that the radius of the path of an electron in a magnetic field is
r = mv/qB
Putting this value in equation (i),
L = mv x mv/qB
or L = (mv)^2/qB
Putting the given values in the above equation,
4 x 10^-25 = (9.1x10^-31)^2 x v^2/ 1.6 x 10^-19 x 1 x 10^-3
v comes out to be 8.88 x 10^7 m/s.
Hence, the speed of an electron when it moves in a circular path perpendicular to a constant magnetic field is 8.88 x 10^7 m/s.
To know more about "angular momentum", refer to the following link:
brainly.com/question/15104254?referrer=searchResults
#SPJ4
Answer:
53.125m
Explanation:
The displacement of the car, denoted by S, can be calculated using the formula:
S = ut + 1/2at²
Where;
u = initial velocity/speed (m/s)
t = time (s)
a = acceleration (m/s²)
According to the information provided in this question, u = 10m/s, t = 5s, a = 0.25m/s², S = ?
S = ut + 1/2at²
S = (10 × 5) + 1/2 (0.25 × 5²)
S = 50 + 1/2 (0.25 × 25)
S = 50 + 1/2(6.25)
S = 50 + 3.125
S = 53.125m
Here is your answer:
1. A alternating current is a current "is an electric current which periodically reverses direction." A direct current is a "<span>current which flows only in one direction."
2. They are alike because both are "they both are able to travel in different directions." How they are not alike is that a "alternating current travels in a reverse direction but a direct current can only travel in one direction each current."
Hope this helps!</span>
The universe is made up of baryonic matter which is a combination of protons, electrons, and neutrons, and also dark matter and dark energy.
Galaxies are comprised of stars, while the universe is comprised of galaxies.
I hope my answer has come to your help. God bless and have a nice day ahead!
Answer:
14.47 m/s
Explanation:
The momentum must be preserved before and after the collision:
The total momentum before the collision

where
are the masses of the car moving south and north, respectively, before the collision.
is the velocity of the car moving South. We take the velocity to the North as the positive direction
The total momentum after the collision

where V = 5.22m/s is the velocity of both cars after the collision
We can equalize the 2 equations and plug in the numbers:




