1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
disa [49]
3 years ago
8

Hillside Elementary ordered 40 pizzas for

Mathematics
1 answer:
Whitepunk [10]3 years ago
6 0

Answer:

28 pizzas eaten

Step-by-step explanation:

1) estimate each number, i will take 3 1/4 as 3

5 3/4 as 6

and

2 3/4 as 3

2) combine the total number of pizzas left over:

3+6+3=12

subtract the number of pizzas left over from the total ordered:

40-12=28

You might be interested in
On the day a coffee shop first opened, it had 140 customers. 65% of the customers ordered a large coffee.
dangina [55]
91 customers ordered large coffees
6 0
3 years ago
Read 2 more answers
HELP ASAP (Geometry)
Andrei [34K]

1) Parallel line: y=-2x-3

2) Rectangle

3) Perpendicular line: y = 0.5x + 2.5

4) x-coordinate: 2.7

5) Distance: d=\sqrt{(4-3)^2+(7-1)^2}

6) 3/8

7) Perimeter: 12.4 units

8) Area: 8 square units

9) Two slopes of triangle ABC are opposite reciprocals

10) Perpendicular line: y-5=-4(x-(-1))

Step-by-step explanation:

1)

The equation of a line is in the form

y=mx+q

where m is the slope and q is the y-intercept.

Two lines are parallel to each other if they have same slope m.

The line given in this problem is

y=-2x+7

So its slope is m=-2. Therefore, the only line parallel to this one is the line which have the same slope, which is:

y=-2x-3

Since it also has m=-2

2)

We can verify that this is a rectangle by checking that the two diagonals are congruent. We have:

- First diagonal: d_1 = \sqrt{(-3-(-1))^2+(4-(-2))^2}=\sqrt{(-2)^2+(6)^2}=6.32

- Second diagonal: d_2 = \sqrt{(1-(-5))^2+(0-2)^2}=\sqrt{6^2+(-2)^2}=6.32

The diagonals are congruent, so this is a rectangle.

3)

Given points A (0,1) and B (-2,5), the slope of the line is:

m=\frac{5-1}{-2-0}=-2

The slope of a line perpendicular to AB is equal to the inverse reciprocal of the slope of AB, so:

m'=\frac{1}{2}

And using the slope-intercept for,

y-y_0 = m(x-x_0)

Using the point (x_0,y_0)=(7,1) we find:

y-1=\frac{1}{2}(x-7)

And re-arranging,

y-1 = \frac{1}{2}x-\frac{7}{2}\\y=\frac{1}{2}x-\frac{5}{2}\\y=0.5x-2.5

4)

The endpoints of the segment are X(1,2) and Y(6,7).

We have to divide the sgment into 1/3 and 2/3 parts from X to Y, so for the x-coordinate we get:

x' = x_0 + \frac{1}{3}(x_1 - x_0) = 1+\frac{1}{3}(6-1)=2.7

5)

The distance between two points A(x_A,y_A) and B(x_B,y_B) is given by

d=\sqrt{(x_B-x_A)^2+(y_B-y_A)^2}

In this problem, the two points are

E(3,1)

F(4,7)

So the distance is given by

d=\sqrt{(4-3)^2+(7-1)^2}

6)

We have:

A(3,4)

B(11,3)

Point C divides the segment into two parts with 3:5 ratio.

The distance between the x-coordinates of A and B is 8 units: this means that the x-coordinate of C falls 3 units to the right of the x-coordinate of A and 5 units to the left of the x-coordinate of B, so overall, the x-coordinate of C falls at

\frac{3}{3+5}=\frac{3}{8}

of the  distance between A and B.

7)

To find the perimeter, we have to calculate the length of each side:

d_{EF}=\sqrt{(x_E-x_F)^2+(y_E-y_F)^2}=\sqrt{(-1-2)^2+(6-4)^2}=3.6

d_{FG}=\sqrt{(x_G-x_F)^2+(y_G-y_F)^2}=\sqrt{(-1-2)^2+(3-4)^2}=3.2

d_{GH}=\sqrt{(x_G-x_H)^2+(y_G-y_H)^2}=\sqrt{(-1-(-3))^2+(3-3)^2}=2

d_{EH}=\sqrt{(x_E-x_H)^2+(y_E-y_H)^2}=\sqrt{(-1-(-3))^2+(6-3)^2}=3.6

So the perimeter is

p = 3.6 + 3.2 + 2 + 3.6 = 12.4

8)

The area of a triangle is

A=\frac{1}{2}(base)(height)

For this triangle,

Base = XW

Height = YZ

We calculate the length of the base and of the height:

Base =XW=\sqrt{(x_X-x_W)^2+(y_X-y_W)^2}=\sqrt{(6-2)^2+(3-(-1))^2}=5.7

Height =YZ=\sqrt{(x_Y-x_Z)^2+(y_Y-y_Z)^2}=\sqrt{(7-5)^2+(0-2)^2}=2.8

So the area is

A=\frac{1}{2}(XW)(YZ)=\frac{1}{2}(5.7)(2.8)=8

9)

A triangle is a right triangle when there is one right angle. This means that two sides of the triangle are perpendicular to each other: however, two lines are perpendicular when their slopes are opposite reciprocals. Therefore, this means that the true statement is

"Two slopes of triangle ABC are opposite reciprocals"

10)

The initial line is

y=\frac{1}{4}x-6

A line perpendicular to this one must have a slope which is the opposite reciprocal, so

m'=-4

Using the slope-intercept form,

y-y_0 = m'(x-x_0)

And using the point

(x_0,y_0)=(-1,5)

we find:

y-5=-4(x-(-1))

Learn more about parallel and perpendicular lines:

brainly.com/question/3414323

brainly.com/question/3569195

#LearnwithBrainly

8 0
3 years ago
What does 12- 23 +1,345 divided by 123
horrorfan [7]
12 - 23 = -11
-11 + 1,345 = 1,334
1,334/123 = 10.85
4 0
3 years ago
Read 2 more answers
Help pleaseee it’s a quiz<br> 35 points
nekit [7.7K]

Answer:

what do you need help with

Step-by-step explanation:

6 0
3 years ago
Banks and other financial institutions offer incentives for people to keep their money in a savings account? True or false?
evablogger [386]
Uhzgshskmz. Shaka mdhsbsnnznzjj
7 0
3 years ago
Other questions:
  • I just want to make sure I'm doing these right. Find the value of each variable.
    6·1 answer
  • I NEED HELP PLZ ASAP!!!!! In right triangle ABCD above, x = A. 6 B. 8 C. 6√2 D. 10 E. 13
    6·1 answer
  • Multiply negative 1 over 3 multiplied by 1 over 4 . Which of the following is correct? (5 points)
    12·1 answer
  • Marika is training for a track race She starts by sprinting 100 yards . She gradually increases her distance , adding 4 yards a
    8·1 answer
  • 5 (r-10)= -51 what is r
    8·1 answer
  • A table shows the difference of several like fractions. This is 4th grade. It ask to write a rule that you can use to subtract l
    11·2 answers
  • Calvin paints pictures and sells them at art shows. He charges $ 56.25 for a large painting. He charges $25.80 for a small paint
    9·2 answers
  • What is the theory of relativity
    5·1 answer
  • 180 customers in 30 days
    6·2 answers
  • The first term of a geometric sequence is 3. The sum of the first two terms is 15 and the sum of the first 3 terms is 63.  Deter
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!