Kepler's third law hypothesizes that for all the small bodies in orbit around the
same central body, the ratio of (orbital period squared) / (orbital radius cubed)
is the same number.
<u>Moon #1:</u> (1.262 days)² / (2.346 x 10^4 km)³
<u>Moon #2:</u> (orbital period)² / (9.378 x 10^3 km)³
If Kepler knew what he was talking about ... and Newton showed that he did ...
then these two fractions are equal, and may be written as a proportion.
Cross multiply the proportion:
(orbital period)² x (2.346 x 10^4)³ = (1.262 days)² x (9.378 x 10^3)³
Divide each side by (2.346 x 10^4)³:
(Orbital period)² = (1.262 days)² x (9.378 x 10^3 km)³ / (2.346 x 10^4 km)³
= 0.1017 day²
Orbital period = <u>0.319 Earth day</u> = about 7.6 hours.
Answer:
he fall movement we see that both the force is different from zero, and the torque is different from zero.
When analyzing the statements the d is true
Explanation:
Let's pose the solution of this problem, to be able to analyze the firm affirmations.
When the person is falling, the weight acts on them all the time, initially the rope has no force, but at the moment it begins to lash it exerts a force towards the top that is proportional to the lengthening of the rope.
The equation for this part is
Fe - W = m a
k x - mg = m a
As the axis of rotation is located at the top where they jump, there is a torque.
What is it
Fe y - W y = I α
angular and linear acceleration are related
a = α r
Fe y - W y = I a / r
In the fall movement we see that both the force is different from zero, and the torque is different from zero.
When analyzing the statements the d is true
Answer:
L= 12 light years
Explanation:
for length dilation we use the formula

now calculating Lo
Lo = 12.5×365×24×3600×3×10^8
= 1.183×10^17 m
now putting the values of v and Lo in the above equation we get

= 1.136×10^17 m
L=
m
so L= 12 light years
The gas planets usually have extremely high gravitational pulls, the surface isn't solid (since its a gas planet), and gas planets are larger than the inner planets.
<span>Similarities- These planets all have moons and they both revolve around the sun (obviously).
Hope this helps.</span>