1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nonamiya [84]
3 years ago
13

A roller coaster car starts from rest at the top of a hill 15 m high and rolls down to ground level. From there it starts into a

vertical loop. Exactly at the top of the loop it is 10 m high and the radius of curvature of the track is 4.0 m. Assuming negligible friction and air resistance, what is the magnitude of the normal force acting on a 65 kg passenger at the top of the loop?
Physics
1 answer:
Softa [21]3 years ago
7 0

Answer:

955.5N

Explanation:

The normal force is given by the difference between the centripetal force and gravity at the top of the loop:

F_N = F_C - F_G = m\frac{v^{2} }{r} - mg

mass m = 65kg

radius of the loop r = 4m

velocity v = ?

g = 9.8 m/s²

To find the centripetal force, you need to find the velocity of the car at the top of the loop.

Use energy conservation:

E_{tot}=mgh + \frac{1}{2} mv^{2}

At the top of the hill:

E_{tot}= mgh_{hill}

At the top of the loop:

E_{tot}=mgh_{loo}_p +\frac{1}{2} m v^{2}

Setting both energies equal and canceling the mass m gives:

gh_{hill} = gh_{loo}_p + \frac{1}{2} v^{2}

Solving for v:

v^{2} = 2g(h_{hill}-h_{loo}_p)

Using v in the first equation:

F_N = \frac{2mg(h_{hill}-h_{loo}_p)}{r} - mg

F_N = 955.5N

You might be interested in
A seagull flying horizontally at 8.00m/s carries a clam with a mass of 300g in its beak. Calculate the total mechanical energy o
Stells [14]

Answer:

9.6J+88.2J=97.8J

Explanation:

Here the velocity of the seagull is given,mass is given and its height.

We have to find its mechanical energy my friend.

Mechanical energy=kinetic energy + potential energy.

First we will find kinetic energy.

For calculating kinetic energy we need mass and velocity,which are given here.

So, Ek=

1 \div 2mv {?}^{2}

So by substituting the values we get 9.6J.

Now we find the potential energy which is mgh.

By substituting the values we get 88.2J.

Then we add both of those and get 97.8J

I hope this satisfies you and make sure you contact me if it doesn't

7 0
3 years ago
A 2. 0 μf and a 4. 0 μf capacitor are connected in series across an 8. 0-v dc source. what is the charge on the 2. 0 μf capacito
Nezavi [6.7K]

voltage across 2.0μf capacitor is 5.32v

Given:

C1=2.0μf

C2=4.0μf

since two capacitors are in series there equivalent capacitance will be

[tex] \frac{1}{c} = \frac{1}{c1} + \frac{1}{c2} [/tex]

c =  \frac{c1 \times c2}{c1 + c2}

=  \frac{2 \times 4}{2 + 4}

=1.33μf

As the capacitance of a capacitor is equal to the ratio of the stored charge to the potential difference across its plates, giving: C = Q/V, thus V = Q/C as Q is constant across all series connected capacitors, therefore the individual voltage drops across each capacitor is determined by its its capacitance value.

Q=CV

given,V=8v

= 1.33 \times 10 {}^{ - 6}  \times 8

= 10.64 \times 10 {}^{ - 6}

charge on 2.0μf capacitor is

\frac{Qeq}{2 \times 10 {}^{ - 6} }

=  \frac{10.64 \times 10 {}^{ - 6} }{2 \times 10 {}^{ - 6} }

=5.32v

learn more about series capacitance from here: brainly.com/question/28166078

#SPJ4

3 0
1 year ago
If a ball with an original velocity of zero is dropped from a tall structure and it takes 7 seconds to hit the ground, what velo
Colt1911 [192]
The velocity of the ball when it reaches the ground is equal to B. 68.6 m/s. This value was obtained from the formula Vf = Vi + at. Vf is the final velocity. Vi is the initial velocity. The acceleration is "a", while the time of travel is "t". The solution is:

<span>Vf = Vi + at
</span>Vf = 0 + (-9.8 m/s^2) (7 s)
Vf = -68.6 m/s

The negative sign denotes the direction of the ball.
5 0
3 years ago
Read 2 more answers
supose you have two wires of equal length made from same material. how is it possible for the wires to have different resistance
Ivenika [448]
I'm not sure but I had this question on a benchmark I think its the density of the wire  you need to  find the density or the mass I'm not sure but i do remember this question 
6 0
2 years ago
Heat is transferred from molecules with more kinetic energy to molecules with _________kinetic energy.
Karolina [17]

Answer:

low

Explanation:

the higher the kinetic energy, the More the vibration of molecules, thus heat is more on the side with highly vibrating molecules

3 0
2 years ago
Other questions:
  • Please...physics rotation questions
    9·1 answer
  • A toy train moves 40m in 20s at the constant velocity. What is the toy’s velocity? *<br> 1 point
    7·1 answer
  • Surface tension ____. a. is the inward force which tends to minimize the surface area of a liquid b. may be increased by deterge
    11·1 answer
  • You are assigned the design of a cylindrical, pressurized water tank for a future colony on Mars, where the acceleration due to
    9·1 answer
  • A physics student of mass 51.0 kg is standing at the edge of the flat roof of a building, 12.0 m above the sidewalk. An unfriend
    12·1 answer
  • A scientist observes and records data for the force of gravity between a star and a few different-sized planets. The planets are
    10·1 answer
  • How has technology influenced theories over time?
    12·1 answer
  • SPEED AND VELOCITY<br> Plz someone help
    12·1 answer
  • I shoot a bullet up at 270 m/s. How long does it fly for????
    9·1 answer
  • A car covers 120 km in 3 hours calculate its speed in m/s​
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!