Exponents if those are the answer it bc the second number is an exponent
3^3= 27
4^3=64
3^4=81
i)On z, define a∗b=a−b
here aϵz
+
and bϵz
+
i.e.,a and b are positive integers
Let a=2,b=5⇒2∗5=2−5=−3
But −3 is not a positive integer
i.e., −3∈
/
z
+
hence,∗ is not a binary operation.
ii)On Q,define a∗b=ab−1
Check commutative
∗ is commutative if,a∗b=b∗a
a∗b=ab+1;a∗b=ab+1=ab+1
Since a∗b=b∗aforalla,bϵQ
∗ is commutative.
Check associative
∗ is associative if (a∗b)∗c=a∗(b∗c)
(a∗b)∗c=(ab+1)∗c=(ab+1)c+1=abc+c+1
a∗(b∗c)=a∗(bc+1)=a(bc+1)+1=abc+a+1
Since (a∗b)∗c
=a∗(b∗c)
∗ is not an associative binary operation.
iii)On Q,define a∗b=
2
ab
Check commutative
∗ is commutative is a∗b=b∗a
a∗b=
2
ab
b∗a=
2
ba
=
2
ab
a∗b=b∗a∀a,bϵQ
∗ is commutativve.
Check associative
∗ is associative if (a∗b)∗c=a∗(b∗c)
(a∗b)∗c=
2
(
2
ab
)∗c
=
4
abc
(a∗b)∗c=a∗(b∗c)=
2
a×
2
bc
=
4
abc
Since (a∗b)∗c=a∗(b∗c)∀a,b,cϵQ
∗ is an associative binary operation.
iv)On z
+
, define if a∗b=b∗a
a∗b=2
ab
b∗a=2
ba
=2
ab
Since a∗b=b∗a∀a,b,cϵz
+
∗ is commutative.
Check associative.
∗ is associative if $$
(a∗b)∗c=a∗(b∗c)
(a∗b)∗c=(2
ab
)
∗
c=2
2
ab
c
a∗(b∗c)=a∗(2
ab
)=2
a2
bc
Since (a∗b)∗c
=a∗(b∗c)
∗ is not an associative binary operation.
v)On z
+
define a∗b=a
b
a∗b=a
b
,b∗a=b
a
⇒a∗b
=b∗a
∗ is not commutative.
Check associative
∗ is associative if $$
(a∗b)∗c=a∗(b∗c)
(a∗b)∗c=(a
b
)
∗
c=(a
b
)
c
a∗(b∗c)=a∗(2
bc
)=2
a2
bc
eg:−Leta=2,b=3 and c=4
(a∗b)
∗
c=(2∗3)
∗
4=(2
3
)
∗
4=8∗4=8
4
a∗(b∗c)=2
∗
(3∗4)=2
∗
(3
4
)=2∗81=2
81
Since (a∗b)∗c
=a∗(b∗c)
∗ is not an associative binary operation.
vi)On R−{−1}, define a∗b=
b+1
a
Check commutative
∗ is commutative if a∗b=b∗a
a∗b=
b+1
a
b∗a=
a+1
b
Since a∗b
=b∗a
∗ is not commutatie.
Check associative
∗ is associative if (a∗b)∗c=a∗(b∗c)
(a∗b)∗c=(
b+1
a
)
∗
c=
c
b
a
+1
=
c(b+1)
a
a∗(b∗c)=a∗(
c+1
b
)=
c+1
b
a
=
b
a(c+1)
Since (a∗b)∗c
=a∗(b∗c)
∗ is not a associative binary operation
Hello!
<em><u>Answer:</u></em>
<em><u>d=3</u></em>
<em><u>*The answer must have a positive sign.*</u></em>
Step-by-step explanation:
Distributive property: a(b+c)=ab+ac
First, you multiply by 10 from both sides of an equation.

Then, you had to refine the problem down.

Next, you subtract by 54 from both sides of an equation.

Simplify.

You can also divide by 22 from both sides of an equation.

And finally, simplify and solve. You can also divide by the numbers.

Final answer: → 
Hope this helps!
Thanks!
-Charlie
Have a great day!
:)
:D
Answer:
B) 4(x - 3)(3x - 2)
Step-by-step explanation:
12x² - 44x + 24
4[3x² - 11x + 6]
4[3x² - 9x - 2x + 6]
4[3x(x - 3) - 2(x - 3)]
4(x - 3)(3x - 2)
Well it starts at -3 and dropped (subtract) 9 degrees:
-3 -9 = -12 degrees Saturday morning!