1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anarel [89]
3 years ago
10

Find the equation of the line through the point (2, 5) that cuts off the least area from the first quadrant. Give your answer us

ing the form below. y − A = B(x − C)

Mathematics
2 answers:
taurus [48]3 years ago
5 0

y - 5 = - ⁵/₂ (x - 2)

<h3>Further explanation</h3>

This case asking the end result in the form of a point-slope form. Before that what has to be done is the differential process for the stationary state.

<u>Step-1:</u> prepare the point-slope form

\boxed{ \ y - y_1 = m(x - x_1) \ }

The equation of the line goes through points (2, 5) and has a gradient m.

\boxed{ \ y - 5 = m(x - 2) \ }

<u>Step-2:</u> the x-intercept and the y-intercept

For y = 0, we get the x-intercept.

\boxed{ \ 0 - 5 = m(x - 2) \ }

\boxed{ \ - 5 = mx - 2m \ }

\boxed{ \ mx = 2m - 5 \ }

Divide both sides by m.

Hence, \boxed{\boxed{ \ x = 2 - \frac{5}{m} \ }}

For x = 0, we get the y-intercept.

\boxed{ \ y - 5 = m(0 - 2) \ }

\boxed{ \ y - 5 = - 2m \ }

Add 5 form both sides.

Hence, \boxed{\boxed{ \ y = 5 - 2m \ }}

<u>Step-3:</u> prepare the area cut off in the first quadrant

We see a right triangle with:

  • \boxed{ \ base \ (x-intercept) = 2 - \frac{5}{m} \ }
  • \boxed{ \ height \ (y-intercept) = 5 - 2m \ }

Area cut off in the first quadrant = \boxed{ \ \frac{1}{2} \times base \times height \ }

\boxed{ \ A(m) = \frac{1}{2} \times (2 - \frac{5}{m}) \times (5 - 2m) \ }

\boxed{ \ A(m) = \frac{1}{2} \times (10 - 4m - \frac{25}{m} + 10) \ }

\boxed{ \ A(m) = \frac{1}{2} \times (20 - 4m - 25m^{-1}) \ }

Thus, \boxed{\boxed{ \ A(m) = 10 - 2m - \frac{25}{2}m^{-1} \ }}

<u>Step-4:</u> the stationary state for the least area

Let us differentiate for A(m).

\boxed{ \ A'(m) = -2 + \frac{25}{2}m^{-2} \ }

\boxed{ \ A'(m) = -2 + \frac{25}{2m^2} \ }

The stationary state for A(m).

\boxed{ \ A'(m) = 0 \ }

\boxed{ \ -2 + \frac{25}{2m^2} = 0 \ }

Multiply both sides by 2m².

\boxed{ \ -4m^2 + 25 = 0 \ }

\boxed{ \ -(4m^2 - 25) = 0 \ }

\boxed{ \ -(2m - 5)(2m + 5)) = 0 \ }

We get \boxed{m = \frac{5}{2}} and \boxed{m = -\frac{5}{2}}.

Because the line equation is in the first quadrant, with the line slopes downwards, this line has a negative gradien, i.e., \boxed{m = -\frac{5}{2}}.

<u>Final step:</u> the equation of the line in the point-slope form

Let us recall the equation in step-1 above.

\boxed{ \ y - 5 = m(x - 2) \ }

Substitute the value of m, so that the form y - A = B (x - C) is obtained, namely:

\boxed{\boxed{ \ y - 5 = -\frac{5}{2}(x - 2) \ }}

- - - - - - - - - -

<u>Notes:</u>

Let us find out the least area from the first quadrant.

\boxed{ \ m = -\frac{5}{2} \rightarrow A = 10 - 2\bigg(-\frac{5}{2}\bigg) - \frac{25}{2}\bigg(-\frac{2}{5}\bigg)} \ }

A = 10 + 5 + 5

Thus, the least area is 20 square units.

- - - - - - - - - -

The x-intercept

x = 2 - \frac{5}{-\frac{5}{2}} \rightarrow \boxed{ \ x = 4 \ }

The y-intercept

y = 5 - 2(-\frac{5}{2}) \rightarrow \boxed{ \ y = 10 \ }

<h3>Learn more</h3>
  1. Finding the equation, in slope-intercept form, of the line that is parallel to the given line and passes through a point brainly.com/question/1473992
  2. Determine the equation represents Nolan’s line  brainly.com/question/2657284  
  3. The derivatives of the composite function  brainly.com/question/6013189#

Keywords: the equation of the line, through the point, (2, 5), cuts off, the least area, the first quadrant, y − A = B(x − C), point-slop, gradient, slope

Amanda [17]3 years ago
4 0

The equation of the line would be

y = mx+b 

where m is the slope, b is the y intercept. 

<span>The line will form a triangular region in the first quadrant. Its area would be 1/2 base times height. The height is the y intercept and the base is y intercept divided by slope. Therefore,</span>

A = b^2/2m

At point (2,5)

5 = 2m+b

Substitute that in the area

A = b^2/5-b to find the least area, differentiate the area with respect to the height and equate it to 0 

dA/db = 0

<span>find b and use that to find m. Then, you can have the equation of the line.</span>


You might be interested in
Which of these ratios is NOT the same (not equivalent)? 12/4 12:3 4 to 1 24:6
Margaret [11]

The answer is A: 12/4.

5 0
4 years ago
Read 2 more answers
An $18 item is marked down 30% what is the clearance price
ivanzaharov [21]
18×30%=

18×.30=5.4

5.4 is the amount of clearanceyou get from the item
Know you have to subtract $5.40 from $18.00

18-5.4=12.6

The item is know $12.60
8 0
3 years ago
Read 2 more answers
What is the answer to 5x + 2 = 3x
3241004551 [841]

Answer:

  • x = -1

Explanation:

5x + 2 = 3x

5x - 3x = -2

2x = -2

x = \dfrac{-2}{2}

x = -1

Hope this helps! ☺

4 0
3 years ago
Read 2 more answers
Retail value is also known as the
Setler79 [48]

Answer:

Retail value is also known as the sticker value.

6 0
3 years ago
Read 2 more answers
ILL MARK BRAINLIEST TO FIRST PERSON TO ANSWER CORRECTLY
Anton [14]

Answer:

what on the planet is the question

8 0
3 years ago
Read 2 more answers
Other questions:
  • Need answer please!!!!!
    6·2 answers
  • Draw a number line from 0 to 2 .then draw and label points at 2 and 0.2
    14·1 answer
  • What are the Terms of 7x+4y+3y+7
    11·2 answers
  • I need to factor each polynomial completely and show my work. 12-17 I need help solving these
    5·1 answer
  • What is the solution to this equation x + 14= -6
    12·1 answer
  • If you had 5,3 and moved left 2 units and 1 unit down
    13·1 answer
  • Gym a charges $25 per month plus a $60 initiation fee. Gym b charges $30 per month and no initiation fee. Find the number of mon
    6·1 answer
  • Which equation is parallel to
    5·2 answers
  • Question 6
    12·1 answer
  • HEEELLPPP FAST 5 minutes maxxxx
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!