The answer should be 8+[(2^2)+3]-5
Hope this helps!
Given:
The graph of a function is given.
To find:
The range of the graph.
Solution:
We know that, the domain is the set of input values and range is the set of output values.
In a graph, domain is represented by the x-axis and range is represented by the y-axis.
From the given graph it is clear that there is an open circle at (-8,-8) and a closed circle at (3,4). It means the function is not defined at (-8,-8) but defined for (3,4).
The graph of the function is defined over the interval
. So, the domain is (-8,3].
The values of the function lie in the interval
. So, the range is (-8,4].
Therefore, the range of the function are all real values over the interval (-8,4].
Answer: -27
Step-by-step explanation:
I cant see all the choices but its a quadratic function#
Answer: width = 300
<u>Step-by-step explanation:</u>
Area (A) = Length (L) x width (w)
Given: A = 268,500
L = 3w - 5
w = w
268,500 = (3w - 5) x (w)
268,500 = 3w² - 5w
0 = 3w² - 5w - 268,500
0 = (3w + 895) (w - 300)
0 = 3w + 895 0 = w - 300
-985/3 = w 300 = w
Since width cannot be negative, disregard w = -985/3
So the only valid answer is: w = 300