1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Softa [21]
3 years ago
9

The length of a concrete slab is three more than three times the width. It's area is 330 square feet. What is the length of the

longer side of the slab?
Mathematics
2 answers:
erastovalidia [21]3 years ago
8 0

Answer: the length of the longer side of the slab is 33 feet

Step-by-step explanation:

Let L represent the length(longer side) of the concrete slab.

Let W represent the width(shorter side) of the concrete slab.

The length of a concrete slab is three more than three times the width. This would be expressed as

L = 3W + 3

The formula for determining the area of a rectangle is expressed as

Area = Length × Width

It's area is 330 square feet. This means that

LW = 330 - - - - - - - - - - -1

Substituting L = 3W + 3 into equation 1, it becomes

W(3W + 3) = 330

3W² + 3W = 330

3W² + 3W - 330 = 0

Dividing through by 3, it becomes

W² + W - 110 = 0

W² + 11W - 10W - 110 = 0

W(W + 11) - 10(W + 11) = 0

W - 10 = 0 or W + 11 = 0

W = 10 or W = - 11

Since the width cannot be negative, then W = 10

L = 3W + 3 = (3 × 10) + 3

L = 30 + 3 = 33

marin [14]3 years ago
6 0

Answer:

Width: 10.5 feet

Length: 31.5 feet

Step-by-step explanation:

Let x represent width of the concrete slab.

We have been given that the length of a concrete slab is three more than three times the width. So length of the slab would be 3x.

We are also told that the area of slab is 330 square feet. We can represent this information in an equation as:

x\cdot 3x=330

3x^2=330

x^2=\frac{330}{3}

x^2=110

Now, we will take square root of both sides.

\sqrt{x^2}=\sqrt{110}

x=10.488\approx 10.5

Therefore, the width of slab is approximately 10.5 feet.

The length of the slab would be 3x\Rightarrow3(10.5)=31.5.

Therefore, the length of slab is approximately 31.5 feet.

You might be interested in
What’s the answer for y= (x-2)^2 +2 {x<4.5}
stealth61 [152]

Answer:

x<4.5

Step-by-step explanation:

y =(x-2)^2 +2 {x<4.5}

add the power and then divide by 2 you get 4.5

8 0
3 years ago
Find the slope of the line.
Verizon [17]

Answer:

Step-by-step explanation:

i dont know

7 0
3 years ago
7.The mass of a grain of sand is approximately 2.8×10^−11 grams
ZanzabumX [31]
The Answer is A. Milligram.
8 0
3 years ago
Read 2 more answers
Can someone please help me: Slove 17+3(z-2)-11z=-7(z+2)+14
gayaneshka [121]

Answer:

z = 11

Step-by-step explanation:

Simplifying

17 + 3(z + -2) + -11z = -7(z + 2) + 14

Reorder the terms:

17 + 3(-2 + z) + -11z = -7(z + 2) + 14

17 + (-2 * 3 + z * 3) + -11z = -7(z + 2) + 14

17 + (-6 + 3z) + -11z = -7(z + 2) + 14

Combine like terms: 17 + -6 = 11

11 + 3z + -11z = -7(z + 2) + 14

Combine like terms: 3z + -11z = -8z

11 + -8z = -7(z + 2) + 14

Reorder the terms:

11 + -8z = -7(2 + z) + 14

11 + -8z = (2 * -7 + z * -7) + 14

11 + -8z = (-14 + -7z) + 14

Reorder the terms:

11 + -8z = -14 + 14 + -7z

Combine like terms: -14 + 14 = 0

11 + -8z = 0 + -7z

11 + -8z = -7z

Solving

11 + -8z = -7z

Solving for variable 'z'.

Move all terms containing z to the left, all other terms to the right.

Add '7z' to each side of the equation.

11 + -8z + 7z = -7z + 7z

Combine like terms: -8z + 7z = -1z

11 + -1z = -7z + 7z

Combine like terms: -7z + 7z = 0

11 + -1z = 0

Add '-11' to each side of the equation.

11 + -11 + -1z = 0 + -11

Combine like terms: 11 + -11 = 0

0 + -1z = 0 + -11

-1z = 0 + -11

Combine like terms: 0 + -11 = -11

-1z = -11

Divide each side by '-1'.

z = 11

Simplifying

z = 11

4 0
3 years ago
Read 2 more answers
In the right triangle below, tanA = 0.45. What is the approximate length of AB?
kodGreya [7K]

Answer with Step-by-step explanation:

We are given that:

tanA = 0.45

tanA= \dfrac{Perpendicular}{Base}

      =  \dfrac{BC}{AC}

⇒  \dfrac{BC}{AC}=0.45

⇒  \dfrac{9}{AC}=\dfrac{45}{100}

⇒  \dfrac{9}{AC}=\dfrac{9}{20}

⇒  AC= 20

Hence, by pythagoras theorem

AB²=AC²+BC²

AB²=20²+9²

AB²=481

⇒  AB=21.9 units

Hence,  the approximate length of AB is:

22 units

7 0
3 years ago
Read 2 more answers
Other questions:
  • Eduardo piensa en un número entre 1 y 20 que tiene exactamente 5 factores. ¿En qué número está pensando?
    7·2 answers
  • Please help me!! I’d really appreciate it!
    13·1 answer
  • Two containers, A and b begin with equal volumes of liquid. 120 mL is then poured from a to B. Container b now contains four tim
    5·2 answers
  • B. Mercury, Venus, and Earth are the three planets closest to the sun. Would their combined distance from
    14·1 answer
  • I just need help tbh I need the answer and sum work to back it up
    10·1 answer
  • Mason’s mom bought g games online. The games cost $12 each plus a $7 shipping fee.write an equation.
    10·2 answers
  • What is the answer to this 25+a=42
    13·2 answers
  • Cody rented a bike from John's Bikes. It
    5·1 answer
  • Identify the graph of the inequality 2(2x-1)+7&lt;13 or-2x + 5≤-10.
    10·1 answer
  • If a_1=9a
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!