Answer: a. The concentrations of the reactants and products have reached constant values
Explanation:
The reactions which do not go on completion and in which the reactant forms product and the products goes back to the reactants simultaneously are known as equilibrium reactions. For a chemical equilibrium reaction, equilibrium state is achieved when the rate of forward reaction becomes equal to rate of the backward reaction.
Equilibrium state is the state when reactants and products are present but the concentrations does not change with time and are constant.
Equilibrium constant is defined as the ratio of concentration of products to the concentration of reactants each raised to the power their stoichiometric ratios. It is expressed as 
K is the constant of a certain reaction when it is in equilibrium, while Q is the quotient of activities of products and reactants at any stage other than equilibrium of a reaction.
For a equilibrium reaction,

![K_{eq}=\frac{[B]}{[A]}](https://tex.z-dn.net/?f=K_%7Beq%7D%3D%5Cfrac%7B%5BB%5D%7D%7B%5BA%5D%7D)
Thus the correct answer is the concentrations of the reactants and products have reached constant values.
As the atomic mass of iron is 55.847u
We say that it is the mass of one mole of iron.
By formula it can be find by
No.of mole=mass in g/molar mass
Mass in gram = no.of mole x molar mass
No.of mole =1
Molar mass = 55.847g
Mass in gram = 1x55.847
= 55.847g of Fe
A chemical change is characterized of the formation of new substances or a chemical reaction. There are a number of observations that we can see if this type of change happens. One would be the formation of gas bubbles, this indicates that one of the products is a gas. Another observation would be a formation of a precipitate in the solution, it would indicate that the new solid formed is not soluble in the solution. A permanent color change in the solution would also indicate a chemical change because it may be that the new substance that is formed has its own distinct color when in solution.
Answer:
b. milk spoiling and c. firecrackers exploding
Explanation:
These are both chemical changes, the composition of them change when this happens and it cannot be reversed
The answer is never because there's no electricity