Answer: 3 and 4 are the answers.
Explanation: i took the quiz.
2.2 x 10^-2
0.055 / 250 = 0.00022 - This would be 2.2 x 10^-4, but the question is asking for percent, not proportion, so multiply by 100% to get the percentage.
0.00022 * 100% = 0.022% = 2.2 * 10^-2
Answer:
Cp = 0.237 J.g⁻¹.°C⁻¹
Explanation:
Amount of energy required by known amount of a substance to raise its temperature by one degree is called specific heat capacity.
The equation used for this problem is as follow,
Q = m Cp ΔT ----- (1)
Where;
Q = Heat = 640 J
m = mass = 125 g
Cp = Specific Heat Capacity = <u>??</u>
ΔT = Change in Temperature = 43.6 °C - 22 °C = 21.6 °C
Solving eq. 1 for Cp,
Cp = Q / m ΔT
Putting values,
Cp = 640 J / (125 g × 21.6 °C)
Cp = 0.237 J.g⁻¹.°C⁻¹
Answer:
The change in entropy of the surrounding is -146.11 J/K.
Explanation:
Enthalpy of formation of iodine gas = 
Enthalpy of formation of chlorine gas = 
Enthalpy of formation of ICl gas = 
The equation used to calculate enthalpy change is of a reaction is:
For the given chemical reaction:

The equation for the enthalpy change of the above reaction is:
![\Delta H_{rxn}=[(2\times \Delta H_f_{(ICl)})]-[(1\times \Delta H_f_{(I_2)})+(1\times \Delta H_f_{(Cl_2)})]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%282%5Ctimes%20%5CDelta%20H_f_%7B%28ICl%29%7D%29%5D-%5B%281%5Ctimes%20%5CDelta%20H_f_%7B%28I_2%29%7D%29%2B%281%5Ctimes%20%5CDelta%20H_f_%7B%28Cl_2%29%7D%29%5D)
![=[2\times 17.78 kJ/mol]-[1\times 0 kJ/mol+1\times 62.436 kJ/mol]=-26.878 kJ/mol](https://tex.z-dn.net/?f=%3D%5B2%5Ctimes%2017.78%20kJ%2Fmol%5D-%5B1%5Ctimes%200%20kJ%2Fmol%2B1%5Ctimes%2062.436%20kJ%2Fmol%5D%3D-26.878%20kJ%2Fmol)
Enthaply change when 1.62 moles of iodine gas recast:

Entropy of the surrounding = 

1 kJ = 1000 J
The change in entropy of the surrounding is -146.11 J/K.
The pressure of gas will increase because gaseous state is the final state and even if the heat added is evaporating some more gas is still added. It also depends on the temperature of heat added, if the temperature doesn't change the it's most likely for the pressure to be stable...
Hope it helps