Answer:
Space probes are made to conduct science experiments. They do not have people on them. Space probes have helped scientists get information about our solar system. Most probes are not designed to return to Earth. Some have landed on other planets! Others have flown past the planets and taken pictures of them for scientists to see. There are even some space probes that go into orbit around other planets and study them for a long time. The information they gather is used to help us understand the weather and other changes which happen on planets other than the Earth. This information is important in helping to plan other space missions such as ones to Mars and to Saturn.
Explanation:
B. +Q, + W are the correct sign
The force needed to keep the space shuttle moving at constant speed is 0.
The given parameters;
- <em>weight of the space shuttle, F = 750,000 N</em>
- <em>constant speed of the space shuttle, v = 28,000 km/h</em>
The mass of the space shuttle is calculated as follows;

The force needed to keep the space shuttle moving at constant speed is calculated as follows;


where;
a is the acceleration of the space shuttle
At a constant speed, acceleration is zero.
F = 76,530.61 x 0
F = 0
Thus, the force needed to keep the space shuttle moving at constant speed is 0.
Learn more here:brainly.com/question/16374764
If you write down the formula for friction, you will get an answer.
Ff = u * N Where N is a push down force that an object experiences.
u (mu) is a constant and has no units
It may not be accelerating and still experience friction. A is not correct.
Color and Density will not affect the frictional force. B is not so.
Buoyant forces are a different thing altogether. Generally friction has nothing to do with them. C is incorrect.
The last one is your answer. Technically mg should be the answer and not mass, but the second part is correct.
This is what wiki says hope it helps
A displacement is a vector whose length is the shortest distance from the initial to the final position of a point P.[1] It quantifies both the distance and direction of an imaginary motion along a straight line from the initial position to the final position of the point.
A displacement may be also described as a 'relative position': the final position of a point (Sf) relative to its initial position (Si), and a displacement vector can be mathematically defined as the difference between the final and initial position vectors: