Answer:
(a)
(b) 
Solution:
As per the question:
Side of the cube, a = 4.4 cm
Coordinates of the diagonally opposite corner, A = <4.4, 4.4, 4.4> cm
Now,
(a) To calculate the unit vector:
(b) To calculate the angle between the two vectors say A and A' is given by:
(1)
Now,
The coordinates of the diagonally opposite corner, A' is <0, 0, 1> cm
Thus
Now,
Using equation (1) :


Thus


Answer:
1) 64.2 mi/h
2) 3.31 seconds
3) 47.5 m
4) 5.26 seconds
Explanation:
t = Time taken = 2.5 s
u = Initial velocity = 0 m/s
v = Final velocity = 21.7 m/s
s = Displacement
a = Acceleration
1) Top speed = 28.7 m/s
1 mile = 1609.344 m

1 hour = 60×60 seconds


Top speed of the cheetah is 64.2 mi/h
Equation of motion

Acceleration of the cheetah is 8.68 m/s²
2)

It takes a cheetah 3.31 seconds to reach its top speed.
3)

It travels 47.5 m in that time
4) When s = 120 m

The time it takes the cheetah to reach a rabbit is 120 m is 5.26 seconds
Answer:
Anyone can sit in a corner office and delegate tasks, but there is more to effective leadership than that. Effective leaders have major impacts on not only the team members they manage, but also their company as a whole. Employees who work under great leaders tend to be happier, more productive and more connected to their organization – and this has a ripple effect that reaches your business's bottom line
Explanation:
:)
I'll bite:
-- Since the sled's mass is 'm', its weight is 'mg'.
-- Since the coefficient of kinetic friction is μk, the force acting opposite to the direction it's sliding is (μk) times (mg) .
-- If the pulling force is constant 'F', then the horizontal forces on the sled
are 'F' forward and (μk · mg) backwards.
-- The net force on the sled is (F - μk·mg).
(I regret the visual appearance that's beginning to emerge,
but let's forge onward.)
-- The sled's horizontal acceleration is (net force) / (mass) = (F - μk·mg) / m.
This could be simplified, but let's not just yet.
-- Starting from rest, the sled moves a distance 's' during time 't'.
We know that s = 1/2 a t² , and we know what 'a' is. So we can write
s = (1/2 t²) (F - μk·mg) / m .
Now we have the distance, and the constant force.
The total work is (Force x distance), and the power is (Work / time).
Let's put it together and see how ugly it becomes. Maybe THEN
it can be simplified.
Work = (Force x distance) = F x (1/2 t²) (F - μk·mg) / m
Power = (Work / time) = <em>F (t/2) (F - μk·mg) / m </em>
Unless I can come up with something a lot simpler, that's the answer.
To simplify and beautify, make the partial fractions out of the
2nd parentheses:
<em> F (t/2) (F/m - μk·m)</em>
I think that's about as far as you can go. I tried some other presentations,
and didn't find anything that's much simpler.
Five points,ehhh ?
Hi there!
II. Linear momentum of the system is zero.
This is an example of a RECOIL collision. With the Law of Conservation of Momentum, momentum remains constant before and after the collision.
Thus, the total momentum would also be equivalent to zero after the collision.