Answer:
D
Step-by-step explanation:
Discount = 35% of 220

= $ 77
Amount saved =$ 77
Answer:
<h2><u>E</u><u>k</u>sponent</h2>
![\sf{ \large{ \boxed{ \red{ {a}^{ \frac{n}{m} } = \sqrt[m]{ {a}^{n} } } } }}](https://tex.z-dn.net/?f=%20%20%5Csf%7B%20%5Clarge%7B%20%5Cboxed%7B%20%5Cred%7B%20%7Ba%7D%5E%7B%20%5Cfrac%7Bn%7D%7Bm%7D%20%20%7D%20%20%3D%20%20%5Csqrt%5Bm%5D%7B%20%7Ba%7D%5E%7Bn%7D%20%7D%20%7D%20%7D%20%7D%7D)

![= \sqrt[3]{ {2}^{4} }](https://tex.z-dn.net/?f=%20%3D%20%20%5Csqrt%5B3%5D%7B%20%7B2%7D%5E%7B4%7D%20%7D%20)
![= \sqrt[3]{2 \times 2 \times 2 \times 2}](https://tex.z-dn.net/?f=%20%3D%20%20%20%5Csqrt%5B3%5D%7B2%20%5Ctimes%202%20%5Ctimes%202%20%5Ctimes%202%7D%20)
![= \boxed {\bold{\sqrt[3]{16}(c.) }}](https://tex.z-dn.net/?f=%20%3D%20%20%20%5Cboxed%20%20%7B%5Cbold%7B%5Csqrt%5B3%5D%7B16%7D%28c.%29%20%7D%7D)
The question is incomplete! Complete question along with answers and step by step explanation is provided below.
Question:
(a) Binomial probability distributions depend on the number of trials n of a binomial experiment and the probability of success p on each trial. Under what conditions is it appropriate to use a normal approximation to the binomial? (Select all that apply.)
nq > 10
np > 5
p > 0.5
np > 10
p < 0.5
nq > 5
(b) What is the probability of "12" or fewer successes for a binomial experiment with 20 trials. The probability of success on a single trial is 0.50. Use the normal approximation of the binomial distribution to answer this question. (Round your answer to four decimal places.)
Answer:
(a) The correct options are np > 5 and nq > 5
(b) P(x ≤ 12) = 0.8133
Step-by-step explanation:
Please refer to the attached images for explanation, I am unable to type in text editor due to some technical error!
Answer:
511 employees
Step-by-step explanation:
Given data
P=690
rate= 2%
time = 13 years
let us apply the simple interest formula
A=P(1-rt)
Note the negative sign (since we are dealing with decrease)
A= 690(1-0.02*13)
A=690(1-0.26)
A=690*0.74
A=510.6
A= 511 approx
Hence the population will reduce to 511 employees