Answer:
See the answers below.
Explanation:
In order to solve this problem we must use the principle of energy conservation. Which tells us that the energy of a body will always be the same regardless of where it is located. For this case we have two points, point A and point B. Point A is located at the top at 120 [m] and point B is in the middle of the cliff at 60 [m].

The important thing about this problem is to identify the types of energy at each point. Let's take the reference level of potential energy at a height of zero meters. That is, at this point the potential energy is zero.
So at point A we have potential energy and since a velocity of 18 [m/s] is printed, we additionally have kinetic energy.

At Point B the rock is still moving downward, therefore we have kinetic energy and since it is 60 [m] with respect to the reference level we have potential energy.

Therefore we will have the following equation:
![(6.5*9.81*120)+(0.5*6.5*18^{2} )=(6.5*9.81*60)+(0.5*6.5*v_{B}^{2} )\\3.25*v_{B}^{2} =4878.9\\v_{B}=\sqrt{1501.2}\\v_{B}=38.75[m/s]](https://tex.z-dn.net/?f=%286.5%2A9.81%2A120%29%2B%280.5%2A6.5%2A18%5E%7B2%7D%20%29%3D%286.5%2A9.81%2A60%29%2B%280.5%2A6.5%2Av_%7BB%7D%5E%7B2%7D%20%29%5C%5C3.25%2Av_%7BB%7D%5E%7B2%7D%20%3D4878.9%5C%5Cv_%7BB%7D%3D%5Csqrt%7B1501.2%7D%5C%5Cv_%7BB%7D%3D38.75%5Bm%2Fs%5D)
The kinetic energy can be easily calculated by means of the kinetic energy equation.
![KE_{B}=\frac{1}{2} *m*v_{B}^{2}\\KE_{B}=0.5*6.5*(38.75)^{2}\\KE_{B}=4878.9[J]](https://tex.z-dn.net/?f=KE_%7BB%7D%3D%5Cfrac%7B1%7D%7B2%7D%20%2Am%2Av_%7BB%7D%5E%7B2%7D%5C%5CKE_%7BB%7D%3D0.5%2A6.5%2A%2838.75%29%5E%7B2%7D%5C%5CKE_%7BB%7D%3D4878.9%5BJ%5D)
In order to calculate the velocity at the bottom of the cliff where the reference level of potential energy (potential energy equal to zero) is located, we must pose the same equation, with the exception that at the new point there is only kinetic energy.
![E_{A}=E_{C}\\6.5*9.81*120+(0.5*9.81*18^{2} )=0.5*6.5*v_{C}^{2} \\v_{c}^{2} =\sqrt{2843.39}\\v_{c}=53.32[m/s]](https://tex.z-dn.net/?f=E_%7BA%7D%3DE_%7BC%7D%5C%5C6.5%2A9.81%2A120%2B%280.5%2A9.81%2A18%5E%7B2%7D%20%29%3D0.5%2A6.5%2Av_%7BC%7D%5E%7B2%7D%20%5C%5Cv_%7Bc%7D%5E%7B2%7D%20%3D%5Csqrt%7B2843.39%7D%5C%5Cv_%7Bc%7D%3D53.32%5Bm%2Fs%5D)
Sphere is that the circular objects in the two dimensional space (1) circle
(2) disk. Two dimensional space is a set of points and the distance of that point,The two points of Sphere that length and center.
Sphere can constructed as the named of surface form circle about any diameter. circle is the special type of the revolution replacing the circle,
sphere is the distance r is the radius of the ball and circle is the center of mathematical ball,as the center and the radius of the sphere is to respectively.
The ball and sphere has not be maintained mathematical references as a solid references. A sphere of any radius is centered at the number of zero.
Answer:
Fₓ = 0,
= 0 and
<em> = - 3.115 10⁻¹⁵ N</em>
Explanation:
The magnetic force given by the expression
F = q v xB
the bold are vectors, the easiest analytical way to determine this force in solving the determinant
F = 1.6 10⁻¹⁵ [ i( 0-0) + j (0-0) + k^( 5.8 0.60 - 0.81 67) ]
F =i^0 + j^0
- k^ 3.115 10⁻¹⁵ N
Fₓ = 0
= 0
<em> = - 3.115 10⁻¹⁵ N</em>
Im not sure but it might be the last option: it gives reasons to be believed and trusted
Answer:
52,360,000km
Explanation:
To solve this problem you use a conversion factor.
By taking into account that 1UA = 1.496*10^{8}km you obtain:

hence, 0.35UA is about 52,360,000km. This is the least distance between Mars and Earth