Answer:
Heat energy required (Q) = 3,000 J
Explanation:
Find:
Mass of water (M) = 200 g
Change in temperature (ΔT) = 15°C
Specific heat of water (C) = 1 cal/g°C
Find:
Heat energy required (Q) = ?
Computation:
Q = M × ΔT × C
Heat energy required (Q) = Mass of water (M) × Change in temperature (ΔT) × Specific heat of water (C)
Heat energy required (Q) = 200 g × 15°C × 1 cal/g°C
Heat energy required (Q) = 3,000 J
Answer:
She covers the distance is 12 km.
The magnitude of displacement is 8.6 km.
The direction of her displacement is north east.
Explanation:
Given that,
Christina drives his moped 7 kilometers North and stop for lunch and then drive 5 km east.
We need to calculate the total distance
Using formula of distance
Put the value into the formula
We need to calculate the magnitude of displacement
Using formula of displacement
The direction of her displacement is north east.
Hence, She covers the distance is 12 km.
The magnitude of displacement is 8.6 km.
The direction of her displacement is north east.
Answer:
Following are the solution to the given question:
Explanation:
Its best approach to this measurement ought to be to indicate that there was a mistake throughout the calculation, as well as the gathering of further details while researching cells for bacteria, directly measuring the cell length of a colony. This chart illustrates its data, which scientists have observed that there's still a measurement.
Answer:
<em>d. The sail should be reflective because in this case the momentum transferred to the sail per unit area per unit time is larger than for absorbing sail, therefore the radiation pressure is larger for the reflective sail.</em>
<em></em>
Explanation:
Let us take the momentum of a photon unit as u
we know that the rate of change of momentum is proportional to the force exerted.
For a absorbing surface, the photon is absorbed, therefore the final momentum is zero. From this we can say that
F = (u - 0)/t = u/t
for a unit time, the force is proportional to the momentum of the wave due to its energy density. Therefore,
F = u
For a reflecting surface, the momentum of the wave strikes the sail and changes direction. Since we know that the speed of light does not change, then the force is proportional to
F = (u - (-u))/t = 2u/t
just as the we did above, it becomes
F = 2u.
From this we can see that the force for a reflective sail is twice of that for an absorbing sail, and we know that the pressure is proportional to the force for a given area. From these, we conclude that <em>the sail should be reflective because in this case the momentum transferred to the sail per unit area per unit time is larger than for absorbing sail, therefore the radiation pressure is larger for the reflective sail.</em>
<em></em>
John Glenn is the first American to orbit the Earth.
<span>♡♡Hope I helped!!! :)♡♡
</span>