1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
il63 [147K]
3 years ago
8

Solve using substitution. x + 2y = 4 and –4x − 7y = –9

Mathematics
2 answers:
xxMikexx [17]3 years ago
4 0

Answer:

X=-10  y=7

Step-by-step explanation:

1) in first equation subtract 2y on both sides

X=4-2y

Substitute as "x" in the second equation:

-4(4-2y)-7y=-9

-16+8y-7y=-9

-16+y=-9

Y=7

Substitute y as 7 to get x)

X=4-2(7)

X=4-14

X=-10

Hope this helps

RSB [31]3 years ago
3 0

Step-by-step explanation:

Given

<em>x </em><em>+</em><em> </em><em>2y </em><em>=</em><em> </em><em>4</em>

<em>x </em><em>=</em><em> </em><em>4</em><em> </em><em>-</em><em> </em><em>2y</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>. </em><em>equation </em><em>1</em>

<em>-</em><em>4</em><em>x</em><em> </em><em>-</em><em>7</em><em>y</em><em> </em><em>=</em><em> </em><em>-</em><em> </em><em>9</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>equation </em><em>2</em>

<em>Putting </em><em>equation </em><em>1 </em><em>in </em><em>equation </em><em>2 </em>

<em>-</em><em> </em><em>4</em><em> </em><em>(</em><em> </em><em>4</em><em> </em><em>-</em><em> </em><em>2y) </em><em> </em><em>-</em><em> </em><em>7y </em><em>=</em><em> </em><em>-</em><em> </em><em>9</em>

<em>-</em><em>1</em><em>6</em><em> </em><em>+</em><em> </em><em>8y </em><em>-</em><em> </em><em>7y </em><em>=</em><em> </em><em>-</em><em>9</em>

<em>y </em><em>=</em><em> </em><em>-</em><em> </em><em>9</em><em> </em><em>+</em><em> </em><em>1</em><em>6</em>

<em>y </em><em>=</em><em> </em><em>7</em>

<em>Now </em>

<em>x </em><em>=</em><em> </em><em>4</em><em> </em><em>-</em><em> </em><em>2</em><em>*</em><em> </em><em>7</em><em> </em><em>=</em><em> </em><em>8</em><em> </em><em>-</em><em> </em><em>7</em><em> </em><em>=</em><em> </em><em>1</em><em> </em>

<em>hope </em><em>this </em><em>helps. </em>

You might be interested in
Find the area. Show your work.
Maksim231197 [3]
9*10(90) - 7*3(21) = 69
5 0
3 years ago
Find the value of c that makes x^2–6x + c a perfect square trinomial and write as a binomial squared.
denpristay [2]

Answer: 9

Step-by-step explanation:

Given

The function is x^2-6x+c

To make it a perfect square, compare it with (a-b)^2=a^2+b^2-2ab

Here,

x=a,\\-6x=-2ab\\\\\therefore b=3

So, c must be square of b i.e. 9

x^2-6x+c\Rightarrow x^2-6x+9\\\Rightarrow (x-3)^2

Therefore, value of c is 9.

3 0
3 years ago
The line width used for semiconductor manufacturing is assumed to be normally distributed with a mean of 0.5 micrometer and a st
Alinara [238K]

Answer:

There is a 0.82% probability that a line width is greater than 0.62 micrometer.

Step-by-step explanation:

Problems of normally distributed samples can be solved using the z-score formula.

In a set with mean \mu and standard deviation \sigma, the zscore of a measure X is given by

Z = \frac{X - \mu}{\sigma}

After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X. The sum of the probabilities is decimal 1. So 1-pvalue is the probability that the value of the measure is larger than X.

In this problem

The line width used for semiconductor manufacturing is assumed to be normally distributed with a mean of 0.5 micrometer and a standard deviation of 0.05 micrometer, so \mu = 0.5, \sigma = 0.05.

What is the probability that a line width is greater than 0.62 micrometer?

That is P(X > 0.62)

So

Z = \frac{X - \mu}{\sigma}

Z = \frac{0.62 - 0.5}{0.05}

Z = 2.4

Z = 2.4 has a pvalue of 0.99180.

This means that P(X \leq 0.62) = 0.99180.

We also have that

P(X \leq 0.62) + P(X > 0.62) = 1

P(X > 0.62) = 1 - 0.99180 = 0.0082

There is a 0.82% probability that a line width is greater than 0.62 micrometer.

3 0
3 years ago
What is the equation of the line shown in this graph?
Grace [21]

Answer:

x=-2

Step-by-step explanation:

It is a straight line when x=-2 :)

8 0
3 years ago
Can someone solve for x
makkiz [27]
-5 because -5 plus 42 equals 37
7 0
3 years ago
Read 2 more answers
Other questions:
  • ava wants to buy three pairs of a certain style of jeans at two different stores jeans jam sells the jeans 25% off the $24.99 re
    9·1 answer
  • PLZ HELP only got 30 minutes left will brainliest. What is the rate of change of the function? –2 --1/2 1/2 2
    7·2 answers
  • 2x + y = 10 <br> 2x - y = 6
    15·2 answers
  • Divide. (20x3 − 35x + 18) ÷ (5x − 5)
    9·1 answer
  • Observe,no desenho a baixo ,o comprimento da cama de Camila .
    7·1 answer
  • 5x - ( 4x - 1) = 2 <br>a. 1/9<br>b. -1<br>c. - 1/9<br>d. 1​
    14·2 answers
  • 8y +9 &gt; 41 please help im on a staar test.
    15·2 answers
  • 10. Choose a word from below to complete the sentence. A salary is called a(n) for the employer
    10·2 answers
  • Helppppppp PLEASE brainley said my awnser was too short so dont listen to this part:)
    6·2 answers
  • What could be a slope for this?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!