Try this solution (the way shown is not the shortest one):
The task on the left part:
1. note, the point P and R have coordinates (-4;-4) and (-3;-2).
2. using the coordinates of points P and R it is possible to make up the equation of the required line:
![\frac{x-x_P}{x_R-x_P} =\frac{y-y_P}{y_R-y_P}; \ => \ \frac{x+4}{-3+4}=\frac{y+4}{-2+4}; \ => \ \frac{x+4}{1}=\frac{y+4}{2} \ or \ y=2x+4](https://tex.z-dn.net/?f=%5Cfrac%7Bx-x_P%7D%7Bx_R-x_P%7D%20%3D%5Cfrac%7By-y_P%7D%7By_R-y_P%7D%3B%20%5C%20%3D%3E%20%5C%20%5Cfrac%7Bx%2B4%7D%7B-3%2B4%7D%3D%5Cfrac%7By%2B4%7D%7B-2%2B4%7D%3B%20%5C%20%3D%3E%20%5C%20%5Cfrac%7Bx%2B4%7D%7B1%7D%3D%5Cfrac%7By%2B4%7D%7B2%7D%20%20%5C%20or%20%5C%20%3Cstrong%3E%3Cu%3Ey%3D2x%2B4%3C%2Fu%3E%3C%2Fstrong%3E)
The task of the right part:
1. note, the common view of the equation of the line is y=kx+b, where b - an intersection point of the Y-axis and the given line; k=QR/PQ.
2. according the picture b= -5, k=4/1=5, so <u>y= -4x-5</u>