Answer:
2
Step-by-step explanation:
<em>let </em><em>the </em><em>number </em><em>be </em><em>x</em>
<em>The</em><em>n</em><em> </em><em>you </em><em>triple </em><em>the </em><em>x </em><em>and </em><em>minus </em><em>7 </em><em> </em><em>from </em><em>it </em><em>and </em><em>you </em><em>equate </em><em>it </em><em>to </em><em>-</em><em>1</em>
Answer:
y = m x + b equation of a straight line
m m' = -1 condition for perpendicular lines
If y = 4 x - 7 then m = 4 so m' = -.25
Y = -.25 X + A we need to find A
A = Y + .25 * 8 = 2 + 2 = 4
Y = -.25 X + 4
Check:
2 = -.25 * 8 + 4 = -2 + 4 = 2
Answer:

Step-by-step explanation:

8s-8 is answer
Just distribute
Answer:
(i) (f - g)(x) = x² + 2·x + 1
(ii) (f + g)(x) = x² + 4·x + 3
(iii) (f·g)(x) = x³ + 4·x² + 5·x + 2
Step-by-step explanation:
The given functions are;
f(x) = x² + 3·x + 2
g(x) = x + 1
(i) (f - g)(x) = f(x) - g(x)
∴ (f - g)(x) = x² + 3·x + 2 - (x + 1) = x² + 3·x + 2 - x - 1 = x² + 2·x + 1
(f - g)(x) = x² + 2·x + 1
(ii) (f + g)(x) = f(x) + g(x)
∴ (f + g)(x) = x² + 3·x + 2 + (x + 1) = x² + 3·x + 2 + x + 1 = x² + 4·x + 3
(f + g)(x) = x² + 4·x + 3
(iii) (f·g)(x) = f(x) × g(x)
∴ (f·g)(x) = (x² + 3·x + 2) × (x + 1) = x³ + 3·x² + 2·x + x² + 3·x + 2 = x³ + 4·x² + 5·x + 2
(f·g)(x) = x³ + 4·x² + 5·x + 2