Answer:
The second answer, because when something saturated, it has the maximum possible number of hydrogen atoms.
Answer:
3,29L
Explanation:
3.29L = V2
Formula: V1/T1 = V2/T2
--------------------
Given:
V1 = 3.0 L V2 = ?
T1 = 310 K T2 = 340 K
--------------------
Plugin:
(X stands in place of V2 just to make it easier to look at)
[3.0L / 310K = X / 340K]
(3.0L / 310K = 0.01L/K)
0.01L/K = X / 340K
(multiply 340K on both sides, it cancels out on the right)
0.01L/K * 340K = X
(0.01L/K * 340K = 3.29L)
**3.29L = X**
[or]
**3.29L = V2**
Answer: c. greater than 7.00
Explanation: The equivalence point of a titration is when all the base is consumed by the acid. When a strong base and a strong acid react, the medium is neutralized because is produced water and salt (which won't suffer hydrolysis). How water's pH is 7, in this type of titration the pH of the equivalence point will be at pH=7. But on titration of a weak acid with a strong base, the reaction of the equivalence point produces water and the conjugate base of the acid. Because the acid is weak, their conjugate base will be strong and will suffer hydrolysis, producing hydroxyl ions, elevating the pH of the water and making it greater than 7.
It would be 3C + 4H2 -> C3H8