Answer:
Explanation:
2. a [CO3 2-][H3O+] / [H2O][HCO3-
b. [H2PO4-][H3O+]/[H3PO4][H2O]
The mass of cobalt (III) needed is
m = 5.2 L (0.42 mol/L) ( 93 g/mol)
m = 97.65 g
The volume of nitric acid needed is
V = 5.2 L (0.42 mol/L) (3 mol / 1 mol) (1000 mL/1.6 mol)
V = 1968.75 mL
The moles of water produced is
n = 5.2 L (0.42 mol/L) (3 mol / 1 mol)
n = 3.15 moles
Answer:
Manganese trinitrate or manganese(III) nitrate
Explanation:
Answer : The entropy change for the surroundings of the reaction is, -198.3 J/K
Explanation :
We have to calculate the entropy change of reaction
.

![\Delta S^o=[n_{NH_3}\times \Delta S^0_{(NH_3)}]-[n_{N_2}\times \Delta S^0_{(N_2)}+n_{H_2}\times \Delta S^0_{(H_2)}]](https://tex.z-dn.net/?f=%5CDelta%20S%5Eo%3D%5Bn_%7BNH_3%7D%5Ctimes%20%5CDelta%20S%5E0_%7B%28NH_3%29%7D%5D-%5Bn_%7BN_2%7D%5Ctimes%20%5CDelta%20S%5E0_%7B%28N_2%29%7D%2Bn_%7BH_2%7D%5Ctimes%20%5CDelta%20S%5E0_%7B%28H_2%29%7D%5D)
where,
= entropy of reaction = ?
n = number of moles
= standard entropy of 
= standard entropy of 
= standard entropy of 
Now put all the given values in this expression, we get:
![\Delta S^o=[2mole\times (192.5J/K.mole)]-[1mole\times (191.5J/K.mole)+3mole\times (130.6J/K.mole)]](https://tex.z-dn.net/?f=%5CDelta%20S%5Eo%3D%5B2mole%5Ctimes%20%28192.5J%2FK.mole%29%5D-%5B1mole%5Ctimes%20%28191.5J%2FK.mole%29%2B3mole%5Ctimes%20%28130.6J%2FK.mole%29%5D)

Therefore, the entropy change for the surroundings of the reaction is, -198.3 J/K
I believe the best answer to that question wud be D. I cud b wrong