If the force and the motion are along the same direction (like it is here) then work is force*distance. The time doesn't come into play until you want the power used. So here
W=9.0*3.0=27J
Answer:
12.7m/s
Explanation:
Given parameters:
Mass of diver = 77kg
Height of jump = 8.18m
Unknown:
Final velocity = ?
Solution:
To solve this problem, we apply the motion equation below:
v² = u² + 2gH
v is the final velocity
u is the initial velocity
g is the acceleration due to gravity
H is the height
Now insert the parameters and solve;
v² = 0² + 2 x 9.8 x 8.18
v = 12.7m/s
Answer:
Explanation:
m = ρV = 1.03( 1000 kg/m³)(π(2² m²)(3.0 m)) = 12360π kg
m ≈ 38,830 kg
Answer:
D.)it orbits near the Kepler belt
Explanation:
The Kuiper belt is an area similar to the asteroide belt extending from the orbit of Neptune to about 50 AU from the Sun. It mainly consists of icy asteroids and dwarf planets, which are rocky objects big enough to be defined as planet but that do not have enough gravity to clear their orbit from other obejcts.
Pluto was discovered in 1930 - initially it was classified as a planet, although it is much smaller than the other 8 planets of the Solar System. However, it has been recently de-classified to dwarf planet because its gravity is not enough to clear its orbit from other objects (asteroids). Pluto is located inside the Kuiper belt, so option D is correct. Other dwarf planets in the Kuiper belt are for instance Haumea and Makemake.