Answer:
time spent = 0.2276
Explanation:
given data
distance = 135 mi
usual speed = 65 mph
today speed = 73 mph
solution
we get here time that is express as
time =
...................1
usual time =
= 2.0769 h
today time =
= 1.8493 h
so we get here time spent as
time spent = 2.0769 h - 1.8493 h
time spent = 0.2276
Answer:
The beam of light is moving at the peed of:
km/min
Given:
Distance from the isalnd, d = 3 km
No. of revolutions per minute, n = 4
Solution:
Angular velocity,
(1)
Now, in the right angle in the given fig.:

Now, differentiating both the sides w.r.t t:

Applying chain rule:


Now, using
and y = 1 in the above eqn, we get:

Also, using eqn (1),


Answer:
a) P =392.4[Pa]; b) F = 706.32[N]
Explanation:
With the input data of the problem we can calculate the area of the tank base
L = length = 10[m]
W = width = 18[cm] = 0.18[m]
A = W * L = 0.18*10
A = 1.8[m^2]
a)
Pressure can be calculated by knowing the density of the water and the height of the water column within the tank which is equal to h:
P = density * g *h
where:
density = 1000[kg/m^3]
g = gravity = 9.81[m/s^2]
h = heigth = 4[cm] = 0.04[m]
P = 1000*9.81*0.04
P = 392.4[Pa]
The force can be easily calculated knowing the relationship between pressure and force:
P = F/A
F = P*A
F = 392.4*1.8
F = 706.32[N]
Answer:
A spinning turbine can generate electricity only in the form of an alternating current.
Answer
D. 0.25 meters/second2
Explanation
The average acceleration is the ratio of change in velocity to the change in time of travel.Taking in this case that the change of velocity is a unit, then Average acceleration is given by;
Aacc=Vf-Vi/Tf-Ti
where Vf=final velocity,Vi=initial velocity' Tf=final time, Ti=initial time
Vf-Vi=1m/s
Tf-Ti=4-0=4seconds
Avacc=1/4=0.25m/s2