The DNA of the offspring are identical to its parent.
During diffusion the molecules move in constant random motion. <span>The </span>net movement<span> of a substance from a region where it has a higher concentration to a region where it has a lower concentration, due to random molecular motion, is called </span>diffusion<span>. Diffusion is a widespread and important process which occurs in both living and non-living systems. </span>
Answer:
1. Fluorine (7 electrons) => c. steals 1 electron
2. Calcium (2 electrons) => a. gives away 2 electrons
3. Oxygen (6 electrons) => d. steals 2 electrons
4. Lithium (1 electron) => e. gives away 1 electron
5. Xenon (8 electrons) => b. neither gives away nor steals any electron
Explanation:
Given the following valence electrons of the atoms listed above, each atom can be matched to its corresponding number of electrons it can steal or give away as they form bonds and attain a stable state:
1. Fluorine (7 electrons) => this will steal 1 electron from another atom to attain a stable state when it comes to make the number of electrons 8.
2. Calcium with 2 valence electrons, will give away this 2 electrons in its outer shell to be stable and form bond with another atom that will accept these 2 electrons.
3. Oxygen with 2 valence electrons, will steal 2 electrons to make the electrons in its outer shell 8, as it bonds with another atom to become stable.
4. Lithium will give away 1 electron to become stable when it combines.
5. Xenon with 8 electrons in its outer shell is in a stable state and kind of inert. It doesn't need to receive or steal any electron from or to any other atom in this state.