Answer:
1(a) = 10
1(b) = 9
1(c) = 12
2(a) = 8
2(b) = 10
2(c) = 1
Step-by-step explanation:
1(a) = 22 - 2.6
= 22 - 12 = 10
1(b) = 6 - 1/4 . 16 + 21 / 3
= 6 - 16/4 + 7
= 6 - 4 + 7
= 9
1(c) = (8-5). (5-3)^2
= 3*2^2
= 3*4
= 12
2(a) = 4(x-2)/(x-1) when x = 0
= 4(0-2)/ (0-1)
= 4*-2/-1
= -8 / -1
= 8
2(b) = (-3x^2 + 4) / 4 when x = -2
= (6^2 + 4) / 4
= (36 + 4) / 4
= 40 / 4 = 10
2(c) = [-2x/4 + 4*(x-1)] / x^2 - 1 when x = 2
= (-1 + 4 * 1) / 4 - 1
= 3 / 3
= 1
8.48 i ...... here iota is for root-1..
Answer:
AE = 18
Step-by-step explanation:
The triangles must be similar so we can use ratios
2x+4 12
-------- = ---------
x+8 10
Using cross products
(2x+4)10 = 12 (x+8)
20x +40 = 12x+96
Subtract 12x from each side
20x-12x +40 = 12x-12x +96
8x +40 = 96
Subtract 40 from each side
8x = 96-40
8x = 56
Divide by 8
x = 56/8
x = 7
AE = 2x+4 = 2(7) +4 = 14+4 = 18
A) x + y = 24
B) x^2 + y^2 = 306
A) x = 24 -y
Then substituting this into B)
(24 - y)^2 +y^2 = 306
576 -48y +y^2 + y^2 = 306
2 y^2 -48y + 270 = 0
x1 = 15
x2 = 9