Answer:

Explanation:
The expression for Clausius-Clapeyron Equation is shown below as:
Where,
P is the vapor pressure
ΔHvap is the Enthalpy of Vaporization
R is the gas constant (8.314×10⁻³ kJ /mol K)
c is the constant.
For two situations and phases, the equation becomes:

Given:
= 13.95 torr
= 144.78 torr
= 25°C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T = (25 + 273.15) K = 298.15 K
= 298.15 K
= 75°C = 348.15 K
So,





<em>Hello there, and thank you for asking your question here on brainly.
The answer to this is Answer choice C: CaCl2
</em>Hope this helped you! ♥<em>
</em>
For the answer to the question above, <span>Hydrophobic regions and hydrophilic regions in the molecules of the b-globin. The replacement causes these hemoglobin molecules to be stickies which gives the cell its sickle shape.
I hope this helps. Have a nice day!</span>
Heat produced = -13588.956 kJ
<h3>Further explanation</h3>
Given
The reaction of combustion of Methane
CH4(g)+2O2(g)→CO2(g)+2H2O(g) ΔH∘rxn=−802.3kJ
271 g of CH4
Required
Heat produced
Solution
mol of 271 g CH₄ (MW=16 g/mol0
mol = mass : MW
mol = 271 : 16
mol = 16.9375
So Heat produced :
= mol x ΔH°rxn
= 16.9375 mol x −802.3kJ/mol = -13588.956 kJ