To get the charge along the inner cylinder, we use Gauss Law
E = d R1/2εo
For the outer cylinder the charge can be calculated using
E = d R2^2/2εoR1
where d is the charge density
Use these two equations to get the charge in between the cylinders and the capacitance between them.
Answer:
I think it is difficult to determine what has caused climate change in the distant past because it must have been a long time ago so geologists can't carry out different experiments and figure out what gases the planet had conjured, so geologists can only make predictions based off the evidence they currently have from what the planet looked like before. The planet must have changed over the years, therefore the climate has also changed in the future, so they cannot work with how the planet looked in the past.
A) 1 rev = 2π rad. Using this ratio, you can find the rad/s: 1160 rev/min x 2π rad/rev x 1 min/60 s = 121.5 rad/s
b) You can find linear speed from angular speed using this equation (note the radius is half the diameter given in the question): v = ωr = 121.5 rad/s x 1.175 m = 142.8 m/s
c) You can find centripetal acceleration using this equation: a = v^2/r = (142.8 m/s)^2 / 1.175 m = 17 355 m/s^2
Answer:
Power = 0.33 Watts
Explanation:
Given the following data;
Distance = 1m
Force = 20N
First of all, we would solve for the work done by the boy.
Workdone = force * distance
Substituting into the equation, we have;
Workdone = 20*1 = 20J
Now to find power;
Power = workdone/time
Power = 20/60
Power = 0.33 Watts.
Answer:
Mass, m = 125 kg
Explanation:
Let us assume that the question says, "What is the mass of an object whose velocity is 400 m/s and the kinetic energy of 10⁷ J.
The kinetic energy of an object is :

So, the mass of the object is 125 kg.