Answer:
The decision designer is a step-wise process
Explanation:
A typical decision tree will be like this:
Are there any forces?
YES - then calculate the resultant forces NO - Then no calculations are needed
IF YES - Are the forces balanced? NO - Then no calculations
IF YES - Then calculations can be done.
Resolve the forces to find the resultant of the forces in the question.
Answer:
3.49 seconds
3.75 seconds
-43200 ft/s²
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration

Time the parachutist falls without friction is 3.19 seconds

Speed of the parachutist when he opens the parachute 31.32 m/s. Now, this will be considered as the initial velocity

So, time the parachutist stayed in the air was 3.19+0.3 = 3.49 seconds


Now the initial velocity of the last half height will be the final velocity of the first half height.

Since the height are equal


Time taken to fall the first half is 2.65 seconds
Total time taken to fall is 2.65+1.1 = 3.75 seconds.
When an object is thrown with a velocity upwards then the velocity of the object at the point to where it was thrown becomes equal to the initial velocity.

Magnitude of acceleration is -43200 ft/s²
Answer:
speed of electrons = 3.25 ×
m/s
acceleration in term g is 3.9 ×
g.
radius of circular orbit is 2.76 ×
m
Explanation:
given data
voltage = 3 kV
magnetic field = 0.66 T
solution
law of conservation of energy
PE = KE
qV = 0.5 × m × v²
v =
v =
v = 3.25 ×
m/s
and
magnetic force on particle movie in magnetic field
F = Bqv
ma = Bqv
a =
a =
a = 3.82 ×
m/s²
and acceleration in term g
a =
a = 3.9 ×
g
acceleration in term g is 3.9 ×
g.
and
electron moving in circular orbit has centripetal force
F =
Bqv =
r =
r =
r = 2.76 ×
m
radius of circular orbit is 2.76 ×
m