1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
IrinaK [193]
3 years ago
12

What is the right way to sleep

Physics
2 answers:
kow [346]3 years ago
6 0
On a nice soft bed after a nice hot shower
nignag [31]3 years ago
5 0

Answer:

by lying down on a nice and soft quilted matress

You might be interested in
Mechanics: design a decision tree to determine if an object is experiencing an unbalanced force, and using newton's laws of moti
masya89 [10]

Answer:

The decision designer is a step-wise process

Explanation:

A typical decision tree will be like this:

Are there any forces?

YES - then calculate the resultant forces              NO - Then no calculations are needed

IF YES - Are the forces balanced?                         NO - Then no calculations

IF YES - Then calculations can be done.

Resolve the forces to find the resultant of the forces in the question.

3 0
3 years ago
A parachutist falls 50.0 m without friction. When the parachute opens, he slows down at a rate of 67 m/s*2. If he reaches the gr
KIM [24]

Answer:

3.49 seconds

3.75 seconds

-43200 ft/s²

Explanation:

t = Time taken

u = Initial velocity

v = Final velocity

s = Displacement

a = Acceleration

s=ut+\frac{1}{2}at^2\\\Rightarrow 50=0t+\frac{1}{2}\times 9.81\times t^2\\\Rightarrow t=\sqrt{\frac{50\times 2}{9.81}}\\\Rightarrow t=3.19\ s

Time the parachutist falls without friction is 3.19 seconds

v^2-u^2=2as\\\Rightarrow v=\sqrt{2as+u^2}\\\Rightarrow v=\sqrt{2\times 9.81\times 50+0^2}\\\Rightarrow v=31.32\ m/s

Speed of the parachutist when he opens the parachute 31.32 m/s. Now, this will be considered as the initial velocity

v=u+at\\\Rightarrow 11=31.32+9.81t\\\Rightarrow t=\frac{11-31.32}{-67}=0.3\ s

So, time the parachutist stayed in the air was 3.19+0.3 = 3.49 seconds

s=ut+\frac{1}{2}at^2\\\Rightarrow \frac{s}{2}=0t+\frac{1}{2}\times a\times t^2\\\Rightarrow \frac{s}{2}=\frac{1}{2}at^2

s=ut+\frac{1}{2}at^2\\\Rightarrow \frac{s}{2}=u1.1+\frac{1}{2}\times a\times 1.1^2

Now the initial velocity of the last half height will be the final velocity of the first half height.

v=u+at\\\Rightarrow v=at

Since the height are equal

\frac{1}{2}at^2=u1.1+\frac{1}{2}\times a\times 1.1^2\\\Rightarrow \frac{1}{2}at^2=at1.1+\frac{1}{2}\times a\times 1.1^2\\\Rightarrow 0.5t^2-1.1t-0.605=0\\\Rightarrow 500t^2-1100t-605=0

t=\frac{11\left(1+\sqrt{2}\right)}{10},\:t=\frac{11\left(1-\sqrt{2}\right)}{10}\\\Rightarrow t=2.65, -0.45

Time taken to fall the first half is 2.65 seconds

Total time taken to fall is 2.65+1.1 = 3.75 seconds.

When an object is thrown with a velocity upwards then the velocity of the object at the point to where it was thrown becomes equal to the initial velocity.

v^2-u^2=2as\\\Rightarrow a=\frac{v^2-u^2}{2s}\\\Rightarrow a=\frac{0^2-240^2}{2\times \frac{8}{12}}\\\Rightarrow a=-43200\ ft/s^2

Magnitude of acceleration is -43200 ft/s²

5 0
3 years ago
A skateboarder drops in off the top of one side of the half pipe shown below. She does not push off and starts from rest. She st
solong [7]

Answer:

v

Explanation:

4 0
2 years ago
the average speed of a runner in a 483. meter race is 3.0 meters per second. How long me runner to complete the race? Dont inclu
lara [203]

Answer:

161

Explanation:

v=\frac{d}{t} slove for t

t=\frac{d}{v}

Insert values of d and v

t=\frac{483}{3} \\

t=161

3 0
3 years ago
Early black-and-white television sets used an electron beam to draw a picture on the screen. The electrons in the beam were acce
lutik1710 [3]

Answer:

speed of electrons = 3.25 × 10^{7} m/s

acceleration in term g is 3.9 × 10^{17} g.

radius of circular orbit is 2.76 × 10^{-4} m

Explanation:

given data

voltage = 3 kV

magnetic field = 0.66 T

solution

law of conservation of energy

PE = KE

qV = 0.5 × m × v²

v = \sqrt{\frac{2qV}{m}}

v = \sqrt{\frac{2\times 1.6 \times 10^{-19}\times 3}{9.1\times 10^{-31}}

v = 3.25 × 10^{7} m/s

and

magnetic force on particle movie in magnetic field

F = Bqv

ma = Bqv

a = \frac{Bqv}{m}  

a =  \frac{0.67\times 1.6\times 10^{-19}\times 3.25\times 10^7}{9.1\times 10^{-31}}

a = 3.82 × 10^{18} m/s²

and acceleration in term g

a = \frac{3.82\times 10^{18}}{9.81}  

a = 3.9 × 10^{17} g

acceleration in term g is 3.9 × 10^{17} g.

and

electron moving in circular orbit has centripetal force

F = \frac{mv^2}{r}  

Bqv = \frac{mv^2}{r}  

r = \frac{mv}{Bq}  

r = \frac{9.1\times 10^{-31}\times 3.25\times 10^7}{0.67\times 1.6\times 10^{-19}}  

r = 2.76 × 10^{-4} m

radius of circular orbit is 2.76 × 10^{-4} m

8 0
3 years ago
Other questions:
  • Agility refers to a person's level of flexibility.
    5·1 answer
  • What is the acceleration of an object if it goes from a velocity of +25 m/s to rest in 5.0 s?
    7·1 answer
  • The Sun is a significant factor that helps to support life. Which of the following Earth-Sun relationships is not true?
    7·2 answers
  • A proton is projected with a velocity of 7.0 km/s into a magnetic field of 0.60 T perpendicular to the motion of the proton. Wha
    10·1 answer
  • 1) Which one of the following is vector,<br>B) Momentum<br>C) Mass<br>A) Energy<br>D) Temperature​
    12·1 answer
  • The high-speed police chase ends at an intersection as a 2,150-kg Ford Explorer (driven by Robin) traveling south at 35 m/s coll
    12·1 answer
  • Help please fill in the blank
    9·2 answers
  • Name two offensive strategies that can be utilized in the game of baseball
    13·1 answer
  • At a certain distance from a point charge the electric potential is 200V and electric field is 200V/m, what is this distance
    12·2 answers
  • Which of the following describes an electric current?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!