In collision that are categorized as elastic, the total kinetic energy of the system is preserved such that,
KE1 = KE2
The kinetic energy of the system before the collision is solved below.
KE1 = (0.5)(25)(20)² + (0.5)(10g)(15)²
KE1 = 6125 g cm²/s²
This value should also be equal to KE2, which can be calculated using the conditions after the collision.
KE2 = 6125 g cm²/s² = (0.5)(10)(22.1)² + (0.5)(25)(x²)
The value of x from the equation is 17.16 cm/s.
Hence, the answer is 17.16 cm/s.
Answer:

Explanation:
Assuming the pith balls as point charges, we can calculate the repulsive force between them, using Coulomb's law:

We observe that the magnitude of the electric force is directly proportional to the product of the magnitude of both signed charges(
) and inversely proportional to the square of the distance(d) that separates them.
Replacing the given values, where k is the Coulomb constant:

Answer:
Mass and height
Explanation:
Gravitational potential energy is energy an object possesses because of its position in a gravitational field. The most common use of gravitational potential energy is for an object near the surface of the Earth where the gravitational acceleration can be assumed to be constant at about 
Which is represented as;

stands for gravitational potantial energy,
m stands for mass of object,
g is the gravitational constant and
h is the height.
Here we see that mass of object and height is directly proportional to the gravitational potential energy.
That means increasing in mass and height will result in increasing gravitational potential energy.
Answer:
Sediments can be carried from one place to another. The movement of sediments by wind, water, ice, or gravity is called erosion.