1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
VashaNatasha [74]
3 years ago
11

A book sitting on a table is moved horizontally. Describe the

Physics
1 answer:
Akimi4 [234]3 years ago
3 0

Frictional force and Applied force has same “magnitude” and “opposite” direction.  

Option: B  

<u>Explanation</u>:  

When a book is moved horizontally by applying “force” on the book, the frictional force is opposed to the book by the table. Here, this “frictional force” is opposing the book has the same force what we applied on the book but this frictional force and the applied force are opposite in direction. Always the “frictional force” is opposite to the “applied force” which stops the object to move. For example, if a force applied leftward to the object the frictional force is acted on the right side of the object.

When two objects are in contact they experience a "frictional force". This "frictional force" acts opposite to the force applied on to move the object.

Formula for "frictional force" is \mu\times N

Where, \mu is coefficient of friction and N is normal force.

You might be interested in
A 70- kg bicycle rides his 9.8- kg bicycle with a speed of 16 m/ s. What is the magnitude of the braking force of the bicycle co
Rus_ich [418]

Answer:

F = -319.2 N

Explanation:

Given that,

The mass of a bicyclist, m = 70 kg

Mass of the bicycle = 9.8 kg

The speed of a bicycle, v = 16 m/s

We need to find the magnitude of the braking force of the bicycle come to rest in 4.0 m.

The braking force is given by :

F=ma\\\\=\dfrac{m(v-u)}{t}\\\\=\dfrac{(70+9.8)(0-16)}{4}\\\\=-319.2\ N

So, the required force is 319.2 N.

3 0
2 years ago
For the following elementary reaction 2br• -&gt; br2-. The rate of consumption of the reaction and the rate of formation of prod
Scorpion4ik [409]

Answer: -\frac{1}{2}\times \frac{d[Br^.]}{dt}=+\frac{d[Br_2]}{dt}

Explanation:

Rate of a reaction is defined as the rate of change of concentration per unit time.

Thus for reaction:

2Br^.\rightarrow Br_2

The rate in terms of reactants is given as negative as the concentration of reactants is decreasing with time whereas the rate in terms of products is given as positive as the concentration of products is increasing with time.

Rate=-\frac{d[Br^.]}{2dt}

or Rate=+\frac{d[Br_2]}{dt}

Thus -\frac{d[Br^.]}{2dt}=+\frac{d[Br_2]}{dt}

4 0
3 years ago
a body of mass 0.2kg is whirled round a horizontal circle by a string inclined at 30 degrees to the vertical calculate &lt;br /&
Katen [24]

Answer:

a)  T = 2.26 N, b) v = 1.68 m / s

Explanation:

We use Newton's second law

Let's set a reference system where the x-axis is radial and the y-axis is vertical, let's decompose the tension of the string

        sin 30 = \frac{T_x}{T}

        cos 30 = \frac{T_y}{T}

        Tₓ = T sin 30

        T_y = T cos 30

Y axis  

       T_y -W = 0

       T cos 30 = mg                     (1)

X axis

        Tₓ = m a

they relate it is centripetal

        a = v² / r

we substitute

         T sin 30 = m\frac{v^2}{r}            (2)

a) we substitute in 1

         T = \frac{mg }{cos 30}

         T = \frac{ 0.2 \ 9.8}{cos  \ 30}

         T = 2.26 N

b) from equation 2

           v² = \frac{T \ sin 30 \ r}{m}

If we know the length of the string

          sin 30 = r / L

          r = L sin 30

we substitute

          v² = \frac{ T \ sin 30 \ L \ sin 30}{m}

          v² = \frac{TL \ sin^2  30}{m}

For the problem let us take L = 1 m

let's calculate

          v = \sqrt{ \frac{2.26 \ 1 \ sin^230}{0.2} }

          v = 1.68 m / s

8 0
3 years ago
During a supernova, the outer layers of a star are blown off and the star's core shrinks down by a factor of 10,000 or more to f
Lana71 [14]

Answer:

a. the core will spin faster.

Explanation:

By law of conservation of angular momentum

(mvR)i= (mvR)f

m= mass of star

v= speed of star

R= radius of star

i= initial

f= final

since, size(R) of the star is reduced by factor of 10,000 and mass remains the same, the velocity must increase by the same factor to keep the angular momentum conserved.

Hence, a. the core will spin faster.

8 0
3 years ago
Assume that the home construction industry is perfectly competitive and in long-run competitive equilibrium. It follows that: A.
olga nikolaevna [1]

Answer:

B. Marginal cost equals long-run average total cost.

Explanation:

The zero profit condition implies that entry continues until all firms are producing at minimum long run average total cost. Since the marginal cost curve cuts the long run average total cost curve at its minimum point, marginal cost and long run average total cost must be equal in long run equilibrium.

4 0
3 years ago
Other questions:
  • What is the most common source of energy for surface waves
    10·1 answer
  • What happens if an opaque object is placed in the path of light?
    15·2 answers
  • Convert 1,200 meters to millimeters
    13·1 answer
  • I need help with finding these?
    15·1 answer
  • The term “distance” refers to ?
    11·1 answer
  • Is it possible to accelerate and not speed up or slow down?
    9·1 answer
  • Which methods of conservation are considered controversial in Virginia? Check all that apply.
    13·1 answer
  • A 15 kg box sits still on a rough inclined plane (no math required here).
    5·1 answer
  • Reflect on your new experiences, what made you uncomfortable and what encouraged you. Did you learn anything new about yourself
    12·1 answer
  • Which of these phase changes requires energy?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!