Cars 'A' and 'C' look like they're moving at the same speed. If their tracks are parallel, then they're also moving with the same velocity.
Answer:
a = 2 m/s2
Explanation:
we know from newtons 2nd law
F = ma.
we also know that from hookes law we have
F = kx
equate both value of force to get value of acceleration
kx = ma,
where,
k is spring constant = 8.0 N/m
x is maximum displacement 0.10 m
m is mass of object 0.40 kg
a = \frac{kx}{m}
= \frac{8 *0 .10}{0.40}
a = 2 m/s2
The component of the force in negative z-direction is -0.144 N.
The given parameters;
- <em>current in the wire, I = 2.7 A</em>
- <em>length of the wire, L = (3.2 i + 4.3j) cm</em>
- <em>magnetic filed, B = 1.24 i</em>
The force on the segment of the wire is calculated as follows;

where;
- <em>θ is the angle wire and magnetic field</em>
<em />
The force on the wire segment will be perpendicular in negative z-direction (applying right hand rule), so there won't be any x and y component of the force.
The angle between the wire and the magnetic field is calculated as follows;

The magnitude of the wire length is calculated as follows;

The component of the force in negative z-direction is calculated as;

Thus, the component of the force in negative z-direction is -0.144 N.
Learn more here:brainly.com/question/22719779
Answer:

Explanation:
We have,
The surface temperature of the star is 60,000 K
It is required to find the wavelength of a star that radiated greatest amount of energy. Wein's displacement law gives the relation between wavelength and temperature such that :

Here,
= wavelength

So, the wavelength of the star is
.