Answer:
brighter
Explanation:
the more light bulbs you add to a series of circuits, the brighter the room will be.
2m/s
Explanation:
Given parameters:
Distance traveled = 60m
time taken = 30seconds
Unknown:
Speed of skateboarder = ?
Solution:
Speed is the rate of change of distance with time taken. It is a scalar quantity that only revers magnitude;
Speed = 
Speed =
= 2m/s
learn more:
Speed brainly.com/question/1548911
#learnwithBrainly
Answer:
The frog's horizontal velocity is 0.2 m/s.
Explanation:
To solve this problem, we must first remember what velocity is and how we solve for it. Velocity can be solved for using the formula x/t, where x represents horizontal distance and t represents time (in seconds), that it takes to travel this distance. If we plug in the given numbers for these variables and solve, we get the following:
v = x/t
v = 0.8m/4s
v = 0.2 m/s
Therefore, the correct answer is 0.2 m/s. We can verify that these units are correct because the formula calls for distance divided by time, so meters per second is a sensible answer.
Hope this helps!
Answer:
Height, H = 25.04 meters
Explanation:
Initially the ball is at rest, u = 0
Time taken to fall to the ground, t = 2.261 s
Let H is the height from which the ball is released. It can be calculated using the second equation of motion as :

Here, a = g
H = 25.04 meters
So, the ball is released form a height of 25.04 meters. Hence, this is the required solution.
Answer:
Option A) n
Explanation:
In accordance to Quantum Mechanical model of an atom:
- The Principle Quantum number (n) gives the description of the shell of an electron and the energy level of an electron in an atom.
- The angular momentum also referred to as Azimuthal Quantum number (l) gives the description of the shape of the orbitals and helps in determination of angular momentum magnitude.
- The magnetic quantum number (
) describes the energy levels or the number of orbitals contained in a subshell and the way these are oriented within.
- The spin quantum no. (
) determines the elelctron spin's direction which may be (
) or (
).