Answer : The final equilibrium temperature of the water and iron is, 537.12 K
Explanation :
In this problem we assumed that heat given by the hot body is equal to the heat taken by the cold body.


where,
= specific heat of iron = 560 J/(kg.K)
= specific heat of water = 4186 J/(kg.K)
= mass of iron = 825 g
= mass of water = 40 g
= final temperature of water and iron = ?
= initial temperature of iron = 
= initial temperature of water = 
Now put all the given values in the above formula, we get:


Therefore, the final equilibrium temperature of the water and iron is, 537.12 K
Answer:
water, when the metastable state is reached, is cooled below the zero temperature. It freezes abruptly. this is called metastable. They are not at equilibrium per se; as at negative temperatures the only equilibrium state of water is ice.
Explanation:
Explanation:
A chemical reaction is defined as the reaction in which bonds between the reactants either break or form which leads to the formation of a new substance.
For example, 
So, when we drop a sodium metal into water then it produces a frizzing sound which shows the metal is reacting with water.
We know that when two aqueous solutions chemically react with each other then it may lead to the formation of an insoluble substance which is known as precipitate.
This means that formation of a precipitate is also a chemical reaction.
Thus, we can conclude that following are the statements which show evidence for a chemical reaction.
- Dropping sodium metal into water produces fizzing.
- Mixing two aqueous solutions produces a precipitate.
First of all the ethylamine is base so will be react with water to take the proton from the water (H⁺) , because water is amphoteric will react with bases as acid and acids as a base, so the water in this case will react as an acid and will gives the proton to the base.
In the picture you may see the chemical equation and the structure of the products.