Answer:
2-methylene propylbenzene
Explanation:
The Wittig Reaction is a reaction that converts aldehydes and ketones into alkenes through reaction with a phosphorus ylide.
The ketone in this case is 1-phenylpropan-1-one. The provided phosphonium ylide is shown in the image attached. The reaction involves;
i) alkylation
ii) addition
The product of the major organic product of the reaction is 2-methylene propylbenzene.
The given sentence is part of a longer question.
I found this question with the same sentence. So, I will help you using this question:
For the reaction N2O4<span>(g) ⇄ 2NO</span>2(g), a reaction mixture at a certain temperature initially contains both N2O4 and NO2 in their standard states (meaning they are gases with a pressure of 1 atm<span>). If </span>Kp = 0.15, which statement is true of the reaction mixture before
any reaction occurs?
(a) Q = K<span>; The reaction </span>is at equilibrium.
(b) Q < K<span>;
The reaction </span>will proceed to
the right.
(c) Q > K<span>; The reaction </span>will proceed to the left.
The answer is the option (c) Q > K<span>; The reaction will proceed to the </span>left,
since Qp<span> = </span>1<span>, and 1 > 0.15.</span>
Explanation:
Kp is the equilibrium constant in term of the partial pressures of the gases.
Q is the reaction quotient. It is a measure of the progress of a chemical reaction.
The reaction quotient has the same form of the equilibrium constant but using the concentrations or partial pressures at any moment.
At equilibrium both Kp and Q are equal. Q = Kp
If Q < Kp then the reaction will go to the right (forward reaction) trying to reach the equilibrium,
If Q > Kp then the reaction will go to the left (reverse reaction) trying to reach the equilibrium.
Here, the state is that both pressures are 1 atm, so Q = (1)^2 / 1 = 1.
Since, Q = 1 and Kp = 0.15, Q > Kp and the reaction will proceed to the left.
Explanation:
The molar mass of the compounds are incorrect
Answer : The reagent present in excess and remains unreacted is, 
Solution : Given,
Moles of
= 3.00 mole
Moles of
= 2.00 mole
Excess reagent : It is defined as the reactants not completely used up in the reaction.
Limiting reagent : It is defined as the reactants completely used up in the reaction.
Now we have to calculate the limiting and excess reagent.
The balanced chemical reaction is,

From the balanced reaction we conclude that
As, 2 moles of
react with 1 mole of 
So, 3.00 moles of
react with
moles of 
From this we conclude that,
is an excess reagent because the given moles are greater than the required moles and
is a limiting reagent and it limits the formation of product.
Hence, the reagent present in excess and remains unreacted is, 