As the temperature decreases, the rate of radiation goes down, but the radiation exists as long as the temperature is above the absolute zero, which is actually 0 Kelvin. 0 Kelvin equals -273°C or -460°F. All objects in the world radiate if above that temperature.
A. A clastic Sedimentary rock
Remember that the total
velocity of the motion is the vector sum of the velocity you would have in
still water and the stream. Always place the vectors carefully to be able to
come up with an accurate sum vector.
<span> </span>
We could take the easy way out and just say
(110 kW) x (3 hours) = 330 kilowatt hours .
But that's cheap, and hardly worth even 5 points.
If we want to talk energy, let's use the actual scientific unit of energy.
________________________________________________
" 110 kw " means 110,000 watts = 110,000 joules/second .
(3 hours) x (3600 sec/hour) = 10,800 seconds.
(110,000 joules/second) x (10,800 seconds) = 1.188 x 10⁹ Joules
That's
==> 1,188,000,000 joules
==> 1,188,000 kilojoules
==> 1,188 megajoules
==> 1.188 gigajoules
Atsa nawfulotta energy !
It goes back to that "110 kw appliance" that we started with.
That's no common ordinary household appliance. 110 kw is something like
147 horsepower. In order to bring 110 kw into your house, you'd need to
take 458 Amperes through the 240-volt line from the pole. Most houses
are limited to 100 or 200 Amperes, tops. And the TRANSFORMER on
the pole, that supplies the whole neighborhood, is probably a 50 kw unit.
<h2>
Answer:</h2>
<em>Hello, </em>
<h3><u>
QUESTION)</u></h3>
<em>✔ We have: KE = PE (potential energy) </em>
<em>PE = m x g x h </em>
The potential energy that the pebble of mass 1 has is called PE1 and the potential energy that the pebble of mass 2 has is called PE2
PE1 = PE2 ⇔ PE1/PE2 = 1

The mass m1 is therefore 4 times greater than that of the stone of mass m2.