Answer:
see below
Explanation:
this is because particles in solids are packed very closely together, thus , the particles collide with each other frequently and thus transfer of energy is faster. however, particles in liquid are closely packed but not as close as in solid so the particles do not collide as frequently. thus, transfer of energy slower than in solid. furthermore, the particles in gas are spaced far apart from each other, thus the particles don't collide with each other frequently, thus transfer of energy is very slow in gas.
hope you get it,
please mark
Answer:
176.58 m
Explanation:
t = Time taken = 6 seconds
u = Initial velocity = 0
v = Final velocity
s = Displacement
g = Acceleration due to gravity = 9.81 m/s² = a
Equation of motion

The object travels 176.58 m from the cliff in 6 seconds.
Explanation:
It represents the direction of flow of positive charge but is treated as a scalar quantity because current follows the laws of scalar addition and not the laws of vector addition. The angle between the wires carrying current does not affect the total current in the circuit.
From convection of magma under the earths crust makes the plates slowly move and as they move over time they build up potential energy from the different plates grinding against each other and after so long the plates will lose there grip on each other and release the potential energy they've been building up for so long as kinetic energy causing what you know as an earthquake hope this helps please give brainliest
The given data is incomplete. The complete question is as follows.
At an accident scene on a level road, investigators measure a car's skid mark to be 84 m long. It was a rainy day and the coefficient of friction was estimated to be 0.36. Use these data to determine the speed of the car when the driver slammed on (and locked) the brakes. (why does the car's mass not matter?)
Explanation:
Let us assume that v is the final velocity and u is the initial velocity of the car. Let s be the skid marks and
be the friction coefficient and m be the mass of car.
Hence, the given data is as follows.
v = 0, s = 84 m,
= 0.36
According to Newton's law of second motion the expression for acceleration is as follows.
F = ma
= ma
= ma
a = 
Also,



= 
= 24.36 m/s
Thus, we can conclude that the speed of the car when the driver slammed on (and locked) the brakes is 24.36 m/s.