Explanation:
That`s is the answer, just check
Answer:
Vf = 69.56 cm/s
Explanation:
In order to find the final speed of the ramp, we will use the equations of motion. First we use second equation of motion to find out the acceleration of marble:
s = Vi t + (1/2)at²
where,
s = distance traveled = 160 cm
Vi = Initial Speed = 0 cm/s (since, marble starts from rest)
t = time interval = 4.6 s
a = acceleration = ?
Therefore,
160 cm = (0 cm/s)(4.6 s) + (1/2)(a)(4.6 s)²
a = (320 cm)/(4.6 s)²
a = 15.12 cm/s²
Now, we use first equation of motion:
Vf = Vi + at
Vf = 0 cm/s + (15.12 cm/s²)(4.6 s)
<u>Vf = 69.56 cm/s</u>
Answer:
330.5 m
Explanation:
In this case, the object is launched horizontally at 30° with an initial velocity of 40 m/s .
The maximum height will be calculated as;
where ∝ is the angle of launch = 30°
vi= initial launch velocity = 40 m/s
g= 10 m/s²
h= 40²*sin²40° / 2*10
h={1600*0.4132 }/ 20
h= 661.1/2 = 330.5 m
A. Getting a full set of valence electrons
Explanation:
The best description of the end result of chemical bonding for most atoms is the getting of a full set of valence electrons.
Atoms reacts with one another in order to complete valence electronic shell.
- The valence electron shell is the outermost energy level of an atom.
- It is from this energy level that electrons are lost or gained to form bonds.
- All atoms wants to be like the noble gases whose valence electronic shell is completely filled up
- This is the crux of chemical bonding
- The attraction that is produced from the interaction leads to bond formation
learn more:
Chemical bond brainly.com/question/10903097
#learnwithBrainly