Answer:
> The amount of heat required to melt ice and raise the temperature of water T o C T^oC ToC is Q = m L f + m c Δ T Q=mL_f+mc\Delta T Q=mLf+mcΔT Here m = 1.5 k g m=1.5 kg m=1.5kg L f = 3.33 ∗ 1 0 5 J
Answer: Approximately 3.65 hours
Explanation:
55 km/h x 3.65 hrs = 200.75 Km/h
Answer:
that best describes the process is C
Explanation:
This problem is a calorimeter process where the heat given off by one body is equal to the heat absorbed by the other.
Heat absorbed by the smallest container
Q_c = m ce (
-T₀)
Heat released by the largest container is
Q_a = M ce (T_{i}-T_{f})
how
Q_c = Q_a
m (T_{f}-T₀) = M (T_{i} - T_{f})
Therefore, we see that the smaller container has less thermal energy and when placed in contact with the larger one, it absorbs part of the heat from it until the thermal energy of the two containers is the same.
Of the final statements, the one that best describes the process is C
since it talks about the thermal energy and the heat that is transferred in the process
Answer:
0.0239364 N
0.0057879 N
Explanation:
= Density of the gas
g = Acceleration due to gravity = 9.81 m/s²
V = Volume
Mass of rubber = 1.5 g
Buoyant force is given by

The buoyant force is 0.0239364 N
Net vertical force is given by

The net vertical force is 0.0057879 N