Answer:
Lenz’s law states that an induced magnetic field in a conductor opposes the applied flux through the conductor.
Explanation:
According to the Lenz's law, the direction of induced e.m.f is such that it generates a current which in turn produces a magnetic field that would oppose the change causing it.
In other words, the direction of any magnetic induction effect is such that it opposes the cause of the effect.
Therefore; an induced magnetic field in a conductor, opposes the applied flux through the conductor.
Answer:
Mercury
Explanation:
It is the smallest planet in our solar system and closest to the Sun
The correct answer is option D
The Ohm's Law states that current passing through a conductor is directly proportional to the voltage across the conductor.
Current =voltage/ resistance
The resistance causes hindrance in the path of the current and does not allows it to flow so, we must reduce the resistance to increase the flow of current in the conducting wire.
-- The density of the glass alone doesn't change.
-- The density of the water alone doesn't change.
-- The density of (the entire glass + everything IN IT) increases,
because the part that used to be air (with very low density) is
changed to water (with much higher density than the air had).