The free-body diagram of the forces acting on the flag is in the picture in attachment.
We have: the weight, downward, with magnitude

the force of the wind F, acting horizontally, with intensity

and the tension T of the rope. To write the conditions of equilibrium, we must decompose T on both x- and y-axis (x-axis is taken horizontally whil y-axis is taken vertically):


By dividing the second equation by the first one, we get

From which we find

which is the angle of the rope with respect to the horizontal.
By replacing this value into the first equation, we can also find the tension of the rope:
Answer:
Doppler Radar gathers information about precipitation by sending out pulses of ___Radio wave___ energy
B. Elastic potential to kinetic energy
The elastic potential energy in the slingshot will be transferred to the stone as kinetic energy as the stone is launched.
Answer:
1 inch = 2.54 cm
12.9 inches= 12.9 x 2.54
= 32.766
= 32.8 cm (approximately)
Hope it helps...
Answer:
W = 16.5 Kj
P = 49.9 Watt
E = 16471
Explanation:
m = 73.5kg
t = 5min 30sec = (5×60) + 30 = 330sec
each step = 16.6cm = 0.166m
h = 135×0.166 = 22.41 m
g = 10 m/s²
(i) W = F × s = W × h = mgh
W = 73.5×10×22.41 = 16471.35
W = 16.5 Kj
(ii) Power = workdone/time
P = 16471.35/330
P = 49.9 Watt
(iii) The energy burnt in this process = 16471