1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
emmasim [6.3K]
3 years ago
14

Athena bought x boxes of cookies to bring to a party. Each box contains 10 cookies. She decides to keep two boxes for herself. S

he brings 70 cookies to the party. Which equation can be used to find the number of boxes, x, Athena bought?
Mathematics
1 answer:
mash [69]3 years ago
7 0

Given parameters:

Number of boxes Athena bought for the party  = x

Number of cookies per box = 10

Number of cookies she brought to the party = 70

Number removed  = 2 boxes

Unknown:

Equation of the number of boxes = ?

Solution:

    1 box of cookies contains 10 cookies

If Athena, removed 2 boxes, in those two boxes, we have 20 cookies

 Total number of cookies  = 70 + 20 = 90 cookies;

So;

    x  = \frac{total number of cookies}{number of cookies per box}

   Therefore;

                    x  = \frac{90}{10}boxes

You might be interested in
Prove that
Pani-rosa [81]
Let's start from what we know.

(1)\qquad\sum\limits_{k=1}^n1=\underbrace{1+1+\ldots+1}_{n}=n\cdot 1=n\\\\\\
(2)\qquad\sum\limits_{k=1}^nk=1+2+3+\ldots+n=\dfrac{n(n+1)}{2}\quad\text{(arithmetic  series)}\\\\\\
(3)\qquad\sum\limits_{k=1}^nk\ \textgreater \ 0\quad\implies\quad\left|\sum\limits_{k=1}^nk\right|=\sum\limits_{k=1}^nk

Note that:

\sum\limits_{k=1}^n(-1)^k\cdot k^2=(-1)^1\cdot1^2+(-1)^2\cdot2^2+(-1)^3\cdot3^2+\dots+(-1)^n\cdot n^2=\\\\\\=-1^2+2^2-3^2+4^2-5^2+\dots\pm n^2

(sign of last term will be + when n is even and - when n is odd).
Sum is finite so we can split it into two sums, first S_n^+ with only positive trems (squares of even numbers) and second S_n^- with negative (squares of odd numbers). So:

\sum\limits_{k=1}^n(-1)^k\cdot k^2=S_n^+-S_n^-

And now the proof.

1) n is even.

In this case, both S_n^+ and S_n^- have \dfrac{n}{2} terms. For example if n=8 then:

S_8^+=\underbrace{2^2+4^2+6^2+8^2}_{\frac{8}{2}=4}\qquad\text{(even numbers)}\\\\\\
S_8^-=\underbrace{1^2+3^2+5^2+7^2}_{\frac{8}{2}=4}\qquad\text{(odd numbers)}\\\\\\

Generally, there will be:

S_n^+=\sum\limits_{k=1}^\frac{n}{2}(2k)^2\\\\\\S_n^-=\sum\limits_{k=1}^\frac{n}{2}(2k-1)^2\\\\\\

Now, calculate our sum:

\left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\left|S_n^+-S_n^-\right|=
\left|\sum\limits_{k=1}^\frac{n}{2}(2k)^2-\sum\limits_{k=1}^\frac{n}{2}(2k-1)^2\right|=\\\\\\=
\left|\sum\limits_{k=1}^\frac{n}{2}4k^2-\sum\limits_{k=1}^\frac{n}{2}\left(4k^2-4k+1\right)\right|=\\\\\\

=\left|4\sum\limits_{k=1}^\frac{n}{2}k^2-4\sum\limits_{k=1}^\frac{n}{2}k^2+4\sum\limits_{k=1}^\frac{n}{2}k-\sum\limits_{k=1}^\frac{n}{2}1\right|=\left|4\sum\limits_{k=1}^\frac{n}{2}k-\sum\limits_{k=1}^\frac{n}{2}1\right|\stackrel{(1),(2)}{=}\\\\\\=
\left|4\dfrac{\frac{n}{2}(\frac{n}{2}+1)}{2}-\dfrac{n}{2}\right|=\left|2\cdot\dfrac{n}{2}\left(\dfrac{n}{2}+1\right)-\dfrac{n}{2}\right|=\left|n\left(\dfrac{n}{2}+1\right)-\dfrac{n}{2}\right|=\\\\\\


=\left|\dfrac{n^2}{2}+n-\dfrac{n}{2}\right|=\left|\dfrac{n^2}{2}+\dfrac{n}{2}\right|=\left|\dfrac{n^2+n}{2}\right|=\left|\dfrac{n(n+1)}{2}\right|\stackrel{(2)}{=}\\\\\\\stackrel{(2)}{=}
\left|\sum\limits_{k=1}^nk\right|\stackrel{(3)}{=}\sum\limits_{k=1}^nk

So in this case we prove, that:

 \left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\sum\limits_{k=1}^nk

2) n is odd.

Here, S_n^- has more terms than S_n^+. For example if n=7 then:

S_7^-=\underbrace{1^2+3^2+5^2+7^2}_{\frac{n+1}{2}=\frac{7+1}{2}=4}\\\\\\
S_7^+=\underbrace{2^2+4^4+6^2}_{\frac{n+1}{2}-1=\frac{7+1}{2}-1=3}\\\\\\

So there is \dfrac{n+1}{2} terms in S_n^-, \dfrac{n+1}{2}-1 terms in S_n^+ and:

S_n^+=\sum\limits_{k=1}^{\frac{n+1}{2}-1}(2k)^2\\\\\\
S_n^-=\sum\limits_{k=1}^{\frac{n+1}{2}}(2k-1)^2

Now, we can calculate our sum:

\left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\left|S_n^+-S_n^-\right|=
\left|\sum\limits_{k=1}^{\frac{n+1}{2}-1}(2k)^2-\sum\limits_{k=1}^{\frac{n+1}{2}}(2k-1)^2\right|=\\\\\\=
\left|\sum\limits_{k=1}^{\frac{n+1}{2}-1}4k^2-\sum\limits_{k=1}^{\frac{n+1}{2}}\left(4k^2-4k+1\right)\right|=\\\\\\=
\left|\sum\limits_{k=1}^{\frac{n-1}{2}-1}4k^2-\sum\limits_{k=1}^{\frac{n+1}{2}}4k^2+\sum\limits_{k=1}^{\frac{n+1}{2}}4k-\sum\limits_{k=1}^{\frac{n+1}{2}}1\right|=\\\\\\

=\left|\sum\limits_{k=1}^{\frac{n-1}{2}-1}4k^2-\sum\limits_{k=1}^{\frac{n+1}{2}-1}4k^2-4\left(\dfrac{n+1}{2}\right)^2+\sum\limits_{k=1}^{\frac{n+1}{2}}4k-\sum\limits_{k=1}^{\frac{n+1}{2}}1\right|=\\\\\\=
\left|-4\left(\dfrac{n+1}{2}\right)^2+4\sum\limits_{k=1}^{\frac{n+1}{2}}k-\sum\limits_{k=1}^{\frac{n+1}{2}}1\right|\stackrel{(1),(2)}{=}\\\\\\
\stackrel{(1),(2)}{=}\left|-4\dfrac{n^2+2n+1}{4}+4\dfrac{\frac{n+1}{2}\left(\frac{n+1}{2}+1\right)}{2}-\dfrac{n+1}{2}\right|=\\\\\\

=\left|-n^2-2n-1+2\cdot\dfrac{n+1}{2}\left(\dfrac{n+1}{2}+1\right)-\dfrac{n+1}{2}\right|=\\\\\\=
\left|-n^2-2n-1+(n+1)\left(\dfrac{n+1}{2}+1\right)-\dfrac{n+1}{2}\right|=\\\\\\=
\left|-n^2-2n-1+\dfrac{(n+1)^2}{2}+n+1-\dfrac{n+1}{2}\right|=\\\\\\=
\left|-n^2-n+\dfrac{n^2+2n+1}{2}-\dfrac{n+1}{2}\right|=\\\\\\=
\left|-n^2-n+\dfrac{n^2}{2}+n+\dfrac{1}{2}-\dfrac{n}{2}-\dfrac{1}{2}\right|=\left|-\dfrac{n^2}{2}-\dfrac{n}{2}\right|=\left|-\dfrac{n^2+n}{2}\right|=\\\\\\

=\left|-\dfrac{n(n+1)}{2}\right|=|-1|\cdot\left|\dfrac{n(n+1)}{2}\right|=\left|\dfrac{n(n+1)}{2}\right|\stackrel{(2)}{=}\left|\sum\limits_{k=1}^nk\right|\stackrel{(3)}{=}\sum\limits_{k=1}^nk

We consider all possible n so we prove that:

\forall_{n\in\mathbb{N}}\quad\left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\sum\limits_{k=1}^nk
7 0
3 years ago
A jeweler wants to combine a 60% gold alloy with a 20% gold alloy to make 1000 grams of 50% gold alloy. How many grams of 60% al
kramer

Answer:

750 grams of 60% alloy

Step-by-step explanation:

Define x = amount of 60% alloy and y = amount of 20% alloy

Equating the amounts of gold:

0.6x+0.2y = 1000(0.5)

Since there must be 1000 grams total:

x+y = 1000

Writing the 2 resulting equations together:

0.6x + 0.2y = 500

x + y = 1000

Multiply the first equation by 5:

3x + y = 2500

x + y = 1000

Subtracting the 2nd equation from the 1st:

2x = 1500

x = 750

Answer: 750 grams of 60% alloy

7 0
1 year ago
Amber and Hallie sell cars.
SpyIntel [72]

Answer:

24

Step-by-step explanation:

Because 72 divided by 3 is 24

4 0
3 years ago
Determine an ordered pair that is a solution to this function ? Y=1.9x+56
In-s [12.5K]
(0, 56)

hope this helps :D
3 0
2 years ago
your class is making a rectangular poster for a rally. the posters design is 6 in. high by 10 in. wide. the space allowed for th
Kay [80]

I FOUND YOUR COMPLETE QUESTION IN OTHER SOURCES.

 PLEASE SEE ATTACHED IMAGE.

 For this case the area is given by:

 A = (22 + x) * (28 + x) = 722

 Rewriting we have:

 616 + 22x + 28x + x ^ 2 = 722

 x ^ 2 + 50x + 616 - 722 = 0

 x ^ 2 + 50x - 106 = 0

 Solving the polynomial we have:

 x1 = 2.04

 x2 = -52.04

 We take the positive root:

 x = 2.04 inches:

 Answer:

 The width of the border to the nearest inch is:

 x = 2inches

3 0
3 years ago
Read 2 more answers
Other questions:
  • Subtrahend is when you subtract a number from another
    11·1 answer
  • A dance teacher makes bows for her students'
    10·1 answer
  • At a basketball game, a vender sold a combined total of 222 sodas and hot dogs. The number of sodas sold was 58 more than the nu
    10·2 answers
  • Which is a true statement about an exterior angle of a triangle?
    6·1 answer
  • Which expression has a negative value?
    10·2 answers
  • HELP ME PLEASE!!!! PLEASE EXPLAIN ASWELL ( FOR 30 POINTS)
    13·1 answer
  • What is the rate of change for the linear relationship modeled in the table?
    6·2 answers
  • #1 HINT: C=Pi X Diameter or C= 2 X Pi X Radius
    6·1 answer
  • 4/5a - 8 = a + 2 solve for a
    12·2 answers
  • Your favorite ice cream shop has 21 flavors. You want to see which flavors are most popular. Which type of chart would be best f
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!