Answer:
P₁ = 2.215 10⁷ Pa, F₁ = 4.3 106 N,
Explanation:
This problem of fluid mechanics let's start with the continuity equation to find the speed of water output
Q = A v
v = Q / A
The area of a circle is
A = π r² = π d² / 4
Let's look at the speeds at each point
v₁ = Q / A₁ = Q 4 /π d₁²
v₁ = 10 4 /π 0.5²
v₁ = 50.93 m / s
v₂ = Q / A₂
v₂ = 10 4 /π 0.25²
v₂ = 203.72 m / s
Now we can use Bernoulli's equation in the colon
P₁ + ½ ρ v₁² + ρ g y₁ = P₂ + ½ ρ v₂² + ρ g y₂
Since the tube is horizontal y₁ = y₂. The output pressure is P₂ = Patm = 1.013 10⁵ Pa, let's clear
P₁ = P2 + ½ rho (v₂² - v₁²)
P₁ = 1.013 10⁵ + ½ 1000 (203.72² - 50.93²)
P₁ = 1.013 10⁵ + 2.205 10⁷
P₁ = 2.215 10⁷ Pa
la definicion de presion es
P₁ = F₁/A₁
F₁ = P₁ A₁
F₁ = 2.215 10⁷ pi d₁²/4
F₁ = 2.215 10⁷ pi 0.5²/4
F₁ = 4.3 106 N
Answer:
Explanation: Covalent bonding occurs when pairs of electrons are shared by atoms. Atoms will covalently bond with other atoms in order to gain more stability, which is gained by forming a full electron shell. By sharing their outermost (valence) electrons, atoms can fill up their outer electron shell and gain stability.
The distance traveled by the hockey player is 0.025 m.
<h3>The principle of conservation of linear momentum;</h3>
- The principle of conservation of linear momentum states that, the total momentum of an isolated system is always conserved.
The final velocity of the hockey play is calculated by applying the principle of conservation of linear momentum;

The time taken for the puck to reach 15 m is calculated as follows;

The distance traveled by the hockey player at the calculated time is;

Learn more about conservation of linear momentum here: brainly.com/question/7538238
Explanation:
It is given that,
Focal length of the concave mirror, f = -13.5 cm
Image distance, v = -37.5 cm (in front of mirror)
Let u is the object distance. It can be calculated using the mirror's formula as :



u = -21.09 cm
The magnification of the mirror is given by :


m = -1.77
So, the magnification produced by the mirror is (-1.77). Hence, this is the required solution.