1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lions [1.4K]
3 years ago
12

A wall has a negative charge distribution producing a uniformhorizontal electric field. A small plastic ball of mass .01kg carry

ing charge of -80 μC is suspended by an uncharged,nonconducting thread .30m long. The thread is attached to thewall and the ball hans in equilibrium in electric and gravitationalfields. Electric force on ball has magnitude of .032N
Calculate magnitude of electric field at ball's location dueto charged wall and show direction on x, y coordinate axes
Determine perpendicular distance from wall to center ofball
The string is cut
Calculate magnitude of resulting acceleration of ball and itsdirection
Describe resulting path of ball
Physics
1 answer:
Sauron [17]3 years ago
8 0

Answer:

a)  E = -4 10² N / C , b) x = 0.093 m, c)     a = 10.31 m / s², θ=-71.9⁰

Explanation:

For that exercise we use Newton's second Law, in the attached we can see a free body diagram of the ball

X axis

             F_{e} - T_{x} = m a

Axis y

            T_{y} - W = 0

Initially the system is in equilibrium, so zero acceleration

            Fe = T_{x}  

            T_{y} = W

Let us search with trigonometry the components of the tendency

            cos θ = T_{y} / T

            sin θ = T_{x}  / T

           T_{y} = cos θ

           T_{x}  = T sin θ

We replace

            q E = T sin θ

            mg = T cosθ

             

a) the electric force is

                F_{e} = q E

                E = F_{e} / q

                E = -0.032 / 80 10⁻⁶

                E = -4 10² N / C

b) the distance to this point can be found by dividing the two equations

                q E / mg = tan θ

                θ = tan⁻¹ qE / mg

Let's calculate

              θ = tan⁻¹ (80 10⁻⁶ 4 10² / 0.01 9.8)

              θ = tan⁻¹ 0.3265

               θ = 18 ⁰

               sin 18 = x/0.30

               x =0.30 sin 18

               x = 0.093 m

c) The rope is cut, two forces remain acting on the ball, on the x-axis the electric force and on the axis and the force gravitations

X axis

           F_{e} = m aₓ

            aₓ = q E / m

           aₓ = 80 10⁻⁶ 4 10² / 0.01

           aₓ = 3.2 m / s²

Axis y

           W = m a_{y}

           a_{y} = g

           a_{y} = 9.8 m/s²

The total acceleration is can be found using Pythagoras' theorem

             a = √ aₓ² + a_{y}²

             a = √ 3.2² + 9.8²

             a = 10.31 m / s²

The Angle meet him with trigonometry

               tan θ = a_{y} / aₓ

               θ = tan⁻¹ a_{y} / aₓ

               θ = tan⁻¹ (-9.8) / 3.2

               θ = -71.9⁰

Movement is two-dimensional type with acceleration in both axes

You might be interested in
a particle is moving along a circular path having a radius of 4 in such that its position as a function of time is given by thet
ANTONII [103]

Answer:

Explanation:

Given

radius of circular path r=4\ in.

Position is given by

\theta =\cos 2t---1

Differentiate 1  to angular velocity we get

\frac{\mathrm{d} \theta }{\mathrm{d} t}=\omega =-2\sin 2t----2

Differentiate 2 to get angular acceleration

\frac{\mathrm{d} \omega }{\mathrm{d} t}=-2^2\cos 2t ---3

Net acceleration is the vector summation of tangential and centripetal force

a_t=\alpha \times r

a_t=-4\cos 2t\times 4=-16\cos 2t

a_r=\omega ^2\cdot r

a_r=(-2\sin 2t)^2\cdot 4

a_r=16\sin^2(2t)

a_{net}=\sqrt{a_r^2+a_t^2}

a_{net}=\sqrt{(16\sin ^2(2t)+(-16\cos 2t)^2}

a_{net}=\sqrt{256\cos ^2(2t)+256\sin ^4(2t)}                                                    

6 0
3 years ago
What is the massof the largest ruby?
alexandr402 [8]
I think the answer is 2283g
4 0
3 years ago
Ice-skater slides toward a sled sitting on the ice and hits it. The skater exerts a 12.6 N force on the sled at an angle of 15.3
RideAnS [48]

Answer:

Expression of work done is

W = Fd cos\theta

Work done to move the sled is given as 187.2 J

Explanation:

As we know that the formula of work done is given as

W = Fd cos\theta

here we know that

F = 12.6 N

d = 15.4 m

\theta = 15.3 degree

so we will have

W = 12.6 \times 15.4 cos15.3

W = 187.2 J

5 0
3 years ago
If you walk 800m north, 600m east, and 200 meters south at a speed of 1m/s. What is your velocity?
ryzh [129]

Answer:

0.375 m/s north & 0.375 m/s east

Explanation:

8 0
3 years ago
The heat Fusion is the amount of heat required to__
Annette [7]
C. Melt 1g if solid into liquid.
5 0
3 years ago
Other questions:
  • A young girl gives her toboggan a push of 4.0m/s uphill. It slides up the hill slowing down at an acceleration of 8.0m/s down. I
    9·1 answer
  • A+b(2d*5d)+7654321-2234567
    13·1 answer
  • The weight of an ice sheet can cause continental lithosphere to sink into the underlying asthenosphere due to ____.
    11·1 answer
  • A train travels north at a speed of 50 m/s.
    5·1 answer
  • What will an object weigh on the moon's surface if it weighs 190 n on earth's surface?
    8·1 answer
  • Which of the following is a simple machine? A. wedge B. meat grinder C. car D. bicycle
    14·1 answer
  • Ms. Mayo challenged her students to build a pendulum that would hit a block of wood and make it travel the farthest distance. Th
    15·1 answer
  • Liquids, when heated,
    14·1 answer
  • 1. Which wave phenomenon is illustrated by this image?
    5·2 answers
  • What affects fuel consumption in automobiles?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!