Rigidbodies are components that allow a GameObject<u> to react to real-time physics. </u>
Explanation:
- Rigidbodies are components that allow a GameObject to react to real-time physics. This includes reactions to forces and gravity, mass, drag and momentum. You can attach a Rigidbody to your GameObject by simply clicking on Add Component and typing in Rigidbody2D in the search field.
- A rigidbody is a property, which, when added to any object, allows it to interact with a lot of fundamental physics behaviour, like forces and acceleration. You use rigidbodies on anything that you want to have mass in your game.
- You can indeed have a collider with no rigidbody. If there's no rigidbody then Unity assumes the object is static, non-moving.
- If you had a game with only two objects in it, and both move kinematically, in theory you would only need a rigidbody on one of them, even though they both move.
Explanation:
Unclear question. The clear rendering reads;
"Into a U-tube containing mercury, pour on the other side sulfuric acid of density 1.84 and on the other side alcohol of density 0.8 so that the levels are in the same horizontal plane. The height of the acid above the mercury being 24 cm. What is the height of the bar and what variation of the level of the acid, when the mercury density is 13.6?
Answer:
the faster an object moves the more kinetic it has. the more mass an object has, the more kinetic energy it has.
Answer:
The relationship between the initial stored energy
and the stored energy after the dielectric is inserted
is:
c) 
Explanation:
A parallel plate capacitor with
that is connected to a voltage source
holds a charge of
. Then we disconnect the voltage source and keep the charge
constant . If we insert a dielectric of
between the plates while we keep the charge constant, we found that the potential decreases as:

The capacitance is modified as:

The stored energy without the dielectric is
The stored energy after the dielectric is inserted is:

If we replace in the above equation the values of V and C we get that


Finally

Answer:
Either B or D. The answer itself is 2.
Explanation:
The equation for the kinetic energy would be 1/2*mv^2.
When m is doubled, we can plug in 1 and 2 to compare our answers.
Plugging in 1 for mass would give us the answer 1/2*v^2.
Plugging in 2 for mass would give us v^2. This means that the velocity was multiplied by 2, meaning that the answer is it is multiplied by 2.
I am not sure which answer is correct since there seems to be two answer choices with 2 in it, but the answer is either B or D (I will call it ABCD because I do not want to cause confusion by saying 2 multiple times).