Answer:
Well, I cannot see the options but if I were you I would choose the one closest to this. Rutherford's model shows that an atom is mostly empty space, with electrons orbiting a fixed, positively charged nucleus in set, predictable paths.
Explanation:
Again I cannot see the options but here is what I would guess. Hope this helped and have a great day! :-)
Answer
Sounds travel slowest in gasses so it would be air
Answer:
None of the given options
Explanation:
Let's go case by case:
A. No matter the volume, the concentration of Fe(NO₃)₃ (and thus of [Fe³⁺] as well) is 0.050 M.
B. We can calculate the moles of Fe₂(SO₄)₃:
- 0.020 M * 0.80 L = 0.016 mol Fe₂(SO₄)₃
Given that there are two Fe⁺³ moles per Fe₂(SO₄)₃ mol, in the solution we have 0.032 moles of Fe⁺³. With that information in mind we <u>can calculate [Fe⁺³]</u>:
- 0.032 mol Fe⁺³ / 0.80 L = 0.040 M
C. Analog to case A., the molar concentration of Fe⁺³ is 0.040 M.
D. Similar to cases A and C., [Fe⁺³] = 0.010 M.
Thus none of the given options would have [Fe⁺³] = 0.020 M.
Answer:
The element that has been oxidized is the N
Explanation:
Zn²⁺(aq) + NH₄⁺(aq) → Zn(s) + NO₃⁻(aq)
See all the oxidation states:
Zn²⁺ → acts with +2
In ammonia, H acts with +1 and N with -3
Zn(s), acts with 0. In all the elements in ground state, the oxidation state is 0.
Zn changed from 2+ to 0. The oxidation number, has decreased.
This element has been reduced.
NO₃⁻ (aq) it's a ion, from nitric acid.
N acts with +5
O acts with -2
The global charge is -1
The N, has increased the oxidation state, so this element is the one oxidized.