The reaction is an equilibrium represented by the equation
<span>Ag2CO3(s) + 2 HNO3(aq) <----> 2 AgNO3(aq) + H2O(l) + CO2(g) </span>
From the <span>Le Chatelier's Principle which </span>states that changing a factor such as concentration, temperature, or pressure of a reaction at equilibrium will cause the reaction to shift in the direction that counteracts the effect of that change.
Therefore; the CO2 produced starts escaping and the concentration and pressure of CO2 drops. The system responds by trying to increase the concentration and pressure of CO2 by producing more. This means more and more Ag2CO3 will dissolve due to reaction with the acid, HNO3.
This continues until one of the reactants is exhausted.
Answer:
The mass of copper = 208.26 grams.
Explanation:
Density = mass / volume
8.9 = mass / 23.4
mass = 8.9 * 23.4
= 208.26 grams.
For many (but not all) problems, you can simply round the atomic weights and the molar mass to the nearest 0.1 g/mole. HOWEVER, make sure that you use at least as many significant figures in your molar mass as the measurement with the fewest significant figures. In other words, never let your molar mass be the measured value that determines how many signficant figures to use in your answer!
Protons and neutrons. Hope this helps!!!
We are asked in the problem to convert teh unit mci or millicurie to another unit of radioactivity, becquerel. The conversion to be used in this case is <span>1 millicurie [mCi] = 37,000,000 becquerel [Bq] .The problem gives 15 mCi which when multiplied to </span>37,000,000 is equal to 5,550,000,000 bQ