Answer: option C. Copper (II) chloride
Explanation:
To name CuCl2, we need to know the oxidation state of Cu in the compound as chlorine always have oxidation on —1 in all its compound. The oxidation state of Cu can be calculated as follows:
Cu + 2Cl = 0 (since the compound has no charge)
Cl = —1
Cu + 2(—1) = 0
Cu —2 = 0
Collect like terms
Cu = 0 +2
Cu = +2
Therefore, the oxidation state of Cu in CuCl2 is +2.
The name of the compound will be copper(ii) chloride, since cupper has oxidation state +2 in the compound.
Answer:
b. Beta emission, beta emission
Explanation:
A factor to consider when deciding whether a particular nuclide will undergo this or that type of radioactive decay is to consider its neutron:proton ratio (N/P).
Now let us look at the N/P ratio of each atom;
For B-13, there are 8 neutrons and five protons N/P ratio = 8/5 = 1.6
For Au-188 there are 109 neutrons and 79 protons N/P ratio = 109/79=1.4
For B-13, the N/P ratio lies beyond the belt of stability hence it undergoes beta emission to decrease its N/P ratio.
For Au-188, its N/P ratio also lies above the belt of stability which is 1:1 hence it also undergoes beta emission in order to attain a lower N/P ratio.
Gross primary production and net primary production. Gross primary production is the amount of chemical energy as biomass that primary producers create in a given length of time.
The correct answer of the given question above would be option B. IRON 0.449. Based on the given details above about an unknown substance that has a mass of 14.7 g and the substance absorbs 1.323×102 J of heat, the temperature of the substance is raised from 25.0 ∘C to45.0 ∘C, most likely, the substance is IRON. Hope this answers the question.
Answer:
Option A.
Lower air pressure results in a lower boiling point
Explanation:
This is because in an open system, the lower the pressure the lesser the energy that will be required for boiling point. The is little or no collision of air molecules with the surface of the liquid
But if there is increase in pressure, more energy will be required to get to boiling point because there will be strong collision between air molecules and surface of the liquid.