I think the answer is a i hope it helps
Water Desalination Processes. Water desalination processes separate dissolved salts and other minerals from water. Feedwater sources may include brackish, seawater, wells, surface (rivers and streams), wastewater, and industrial feed and process waters. Membrane separation requires driving forces including pressure (applied and vapor),...
Hope I helped :)
Answer:
287.30 g of FeCO₃
Solution:
The Balance Chemical Equation is as follow,
FeCl₂ + Na₂CO₃ → FeCO₃ + 2 NaCl
Step 1: Calculate Mass of FeCl₂ as,
Molarity = Moles ÷ Volume
Solving for Moles,
Moles = Molarity × Volume
Putting Values,
Moles = 2 mol.L⁻¹ × 1.24 L
Moles = 2.48 mol
Also,
Moles = Mass ÷ M.Mass
Solving for Mass,
Mass = Moles × M.Mass
Putting Values,
Mass = 2.48 mol × 126.75 g.mol⁻¹
Mass = 314.34 g of FeCl₂
Step 2: Calculate Mass of FeCO₃ formed as,
According to equation,
126.75 g (1 mole) FeCl₂ produces = 115.85 g (1 mole) FeCO₃
So,
314.34 g of FeCl₂ will produce = X g of FeCO₃
Solving for X,
X = (314.34 g × 115.85 g) ÷ 126.75 g
X = 287.30 g of FeCO₃
<h2>
brainlyest pleas</h2>
Explanation:
for immiscible liquids it is quite easy to separate and the separating funnel can be used but for miscible liquid they form a single entity and separating them is quite impossible if the differences in temperature is not considered,so in distillation the one with lower boiling point evaporates out living behind the one with high boiling point