Answer:
Amount she would have in 2 years at a simple interest of is
$5000 + ($5000 x 0.048 x 2) = $5480
Amount she would have in 2 years at a 4.1 % / year compounded semi- annually is :
$5000 x ( 1 +0.041/2)^4 = $5422.78
the first option yields a higher value in two years when compared with the second option. Thus, the first option is the best one to choose
Step-by-step explanation:
Future value with simple interest = principal + interest
Interest = principal x interest rate x time
0.048 x 5000 x 2 = 480
future value = $480 + 5000 = $5480
The formula for calculating future value with compounding:
FV = P (1 + r)^nm
FV = Future value
P = Present value
R = interest rate
m = number of compounding
N = number of years
5000 x ( 1 + 0.041 / 2)^(2 x 2) = $5422.78
I'm thinking this is what the problem looks like:

. The first thing to do is to move the

over to the other side because it has a common denominator with the other side. Doing that and at the same time combining them over their common denominator looks like this:

. The best way to solve for x now is to cross-multiply to get 3(4-x)=-4(x-4). Distributing through the parenthesis is 12 - 3x = -4x + 16. Solving for x gives us x = 4. Of course when we sub a 4 back in for x we get real problems, don't we? Dividing by zero breaks every rule in math that there ever was! So, yes, the solution is extraneous.
Answer:
<h3>n=1,</h3>
=5
<h3>n =2,</h3>
=15
<h3>n=3</h3>
=33
Step-by-step explanation:



Answer:
I just answered it
Step-by-step explanation: