<h2>
Answer with explanation:</h2>
Formula for plus-four confidence interval :
![\hat{p}\pm z^* \sqrt\dfrac{\hat{p}(1-\hat{p})}{n+4}}](https://tex.z-dn.net/?f=%5Chat%7Bp%7D%5Cpm%20z%5E%2A%20%5Csqrt%5Cdfrac%7B%5Chat%7Bp%7D%281-%5Chat%7Bp%7D%29%7D%7Bn%2B4%7D%7D)
, where n= Sample size.
= Sample proportion and ![\hat{p}=\dfrac{x+2}{n+4}](https://tex.z-dn.net/?f=%5Chat%7Bp%7D%3D%5Cdfrac%7Bx%2B2%7D%7Bn%2B4%7D)
z* = Critical z-value.
Let p be the proportion of puppies area found with early hip dysplasia.
As per given , we have
n= 42
![\hat{p}=\dfrac{5+2}{42+4}=0.1522](https://tex.z-dn.net/?f=%5Chat%7Bp%7D%3D%5Cdfrac%7B5%2B2%7D%7B42%2B4%7D%3D0.1522)
Since confidence interval is not given , so we assume it as 95% .
z-critical value for 95% confidence is 1.96.
Then, the required confidence interval will become :
![0.1522\pm (1.96)\sqrt{\dfrac{0.1522(1-0.1522)}{42+4}}\\\\ 0.152\pm (1.96)\sqrt{0.002805112173}\\\\ 0.152\pm 0.1038\\\\ =(0.1522- 0.1038 ,\ 0.152+ 0.1038)\approx(0.0484,\ 0.256)](https://tex.z-dn.net/?f=0.1522%5Cpm%20%281.96%29%5Csqrt%7B%5Cdfrac%7B0.1522%281-0.1522%29%7D%7B42%2B4%7D%7D%5C%5C%5C%5C%200.152%5Cpm%20%20%281.96%29%5Csqrt%7B0.002805112173%7D%5C%5C%5C%5C%200.152%5Cpm%200.1038%5C%5C%5C%5C%20%3D%280.1522-%200.1038%20%2C%5C%200.152%2B%200.1038%29%5Capprox%280.0484%2C%5C%200.256%29)
Hence, the plus four confidence interval for p = (0.0484, 0.256)
Interpretation: We are 95% sure that the true proportion of puppies area found with early hip dysplasia lies in (0.0484, 0.256).