The equivalent algebraic monomial expression of the expression given as (-8a^5b)(3ab^4) is -24a^6b^5
<h3>How to determine an equivalent algebraic monomial expression?</h3>
The expression is given as:
(-8a^5b)(3ab^4)
Multiply -8 and 3
So, we have:
(-8a^5b)(3ab^4) = (-24a^5b)(ab^4)
Multiply a^5 and a (a^5 * a = a^6)
So, we have:
(-8a^5b)(3ab^4) = (-24a^6b)(b^4)
Multiply b and b^4
So, we have:
(-8a^5b)(3ab^4) = -24a^6b^5
Hence, the equivalent algebraic monomial expression of the expression given as (-8a^5b)(3ab^4) is -24a^6b^5
Read more about expressions at:
brainly.com/question/723406
#SPJ1
The answer to this question will be B
The answer is 14.50. Hope that helped
A is the answer. Since they will both be divided by 4 due to the same amount of points, because Globrite has a greater range, it will have a greater mean. Glo brite also ranges bigger than Luminate
He can make 18 and then he wouldn't have enough to make that 19th. You just take 28 and multiply it by 2, then divide it by 3. Or just multiply 28 by 2/3