When considering similar triangles, we need congruent angles and proportional sides.
Hence
"Angles B and B' are congruent, and angles C and C' are congruent." is sufficient to prove similarity of two triangles.
"Segments AC and A'C' are congruent, and segments BC and B'C' are congruent." does not prove anything because we know nothing about the angles.
"Angle C=C', angle B=B', and segments BC and B'C' are congruent." would prove ABC is congruent to A'B'C' if and only if AB is congruent to A'B' (not just proportional).
"<span>Segment BC=B'C', segment AC=A'C', and angles B and B' are congruent</span>" is not sufficient to prove similarity nor congruence because SSA is not generally sufficient.
To conclude, the first option is sufficient to prove similarity (AAA)
Answer:
$2 per hour
Step-by-step explanation:
12 / 6 = 2
Answer:
25+24= 49coins 49÷2.5 is 19.5 so there are 19.5 dimes in the bag I believe
Answer:
The median number of interceptions in 1998 is equal to the third quartile of 2008.
Step-by-step explanation:
i guessed pls mark brainliest
The <em>speed</em> intervals such that the mileage of the vehicle described is 20 miles per gallon or less are: v ∈ [10 mi/h, 20 mi/h] ∪ [50 mi/h, 75 mi/h]
<h3>How to determine the range of speed associate to desired gas mileages</h3>
In this question we have a <em>quadratic</em> function of the <em>gas</em> mileage (g), in miles per gallon, in terms of the <em>vehicle</em> speed (v), in miles per hour. Based on the information given in the statement we must solve for v the following <em>quadratic</em> function:
g = 10 + 0.7 · v - 0.01 · v² (1)
An effective approach consists in using a <em>graphing</em> tool, in which a <em>horizontal</em> line (g = 20) is applied on the <em>maximum desired</em> mileage such that we can determine the <em>speed</em> intervals. The <em>speed</em> intervals such that the mileage of the vehicle is 20 miles per gallon or less are: v ∈ [10 mi/h, 20 mi/h] ∪ [50 mi/h, 75 mi/h].
To learn more on quadratic functions: brainly.com/question/5975436
#SPJ1